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Abstract—Low latency live streaming (LLLS) leverages chun-
ked transfer encoding (CTE) to substantially reduce end-to-end
latency. However, this paradigm introduces a cascade of chal-
lenges for adaptive bitrate (ABR) algorithms: (1) the sending idle
periods between chunks in CTE render bandwidth measurement
difficult and prone to error; (2) bandwidth prediction in LLLS
is an irregular time series forecasting with uncertain future
segment size, leading to a circular prediction dependency; (3)
stochastic uncertainty within LLLS, such as fluctuating idle time,
leads to imprecise buffer evolution and ABR degradation. In
this paper, we tackle the issues and present AAR, a novel LLLS
framework that comprises 3 key modules: (1) accurate bandwidth
measurement that leverages a server-side Flag to identify burst
transmission and isolate chunks. We further propose to fuse
our two learning and heuristic-based algorithms via confidence
estimation; (2) bandwidth prediction via conditional normalizing
flow to simultaneously learn joint variable distributions. We
further propose a bitrate-aware transformer to capture the
intrinsic circular relationships as backbone flow condition; (3)
an LLLS tailored ABR with a novel and robust objective to
maximize the minimum Quality of Experience (QoE) under
uncertainty. We propose two theorems to derive the min solution
via download time bounds, and we maximize the QoE via Model
Predictive Controller (MPC) with LLLS tailored state evolution.
Extensive experiments on real-world network traces demonstrate
that AAR significantly outperforms baselines with absolute error
reduction by 11%-83% for measurement and up to 17% for
prediction. We also improve QoE by up to 102% across all tested
network conditions.

Index Terms—Live video streaming, Bandwidth measurement,
Bandwidth prediction, Adaptive streaming

I. INTRODUCTION

V IDEO streaming has seen explosive growth over the
years, occupying 70% of global Internet traffic, of which

live video comprises 17% [1]. This trend motivates the de-
velopment of advanced adaptive bitrate (ABR) algorithms to
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enhance user Quality of Experience (QoE). Unlike traditional
video-on-demand (VOD), low latency live streaming (LLLS)
[2], [3] exhibits specific challenges, as content can be delivered
only after it is captured. This constraint imposes a latency of at
least one segment duration, and the risk of rebuffering events
increases due to smaller buffer sizes required for low-latency
playback. To mitigate this issue, advanced systems such as
LL-DASH [4], employ MPEG Common Media Application
Format (CMAF) [5] coupled with HTTP/1.1 chunked transfer
encoding (CTE) [6]. This allows the server to transmit smaller
CMAF chunks upon arrival from the ingest side, rather than
waiting for an entire segment. This mechanism reduces the
end-to-end latency from 10-30 seconds to just 1-5 seconds.
However, such LLLS implementation faces 3 critical issues:

Inaccurate Bandwidth Measurement. Despite low latency
via CMAF chunks, it introduces new challenges because the
transmission of discrete chunks depends on the server-side
encoding process from codec and video content. Therefore
typical segment-level download time may contain idleness if
the client fetches the live-edge segment that is still being
encoded or packaged at the time of the request. Such inflated
download time eventually leads to bandwidth underestimation
and suboptimal bitrates. Moreover, the physical time gap also
prohibits the exact sending timestamp of each chunk, leaving
only arrival time pattern for analysis. Previous work like
LoL+ [7] and Fleet [8] either overlook such idle time or
leverage an inappropriate filtering algorithm without a proper
external signal, leading to inaccurate bandwidth results and
ABR performance.

Circular Bandwidth Prediction. Segment-level bandwidth
in LLLS is a complicated irregular time series [9] with
different time intervals. They’re dependent on the download
duration, which in turn is mainly determined by bandwidth
and future segment size. However, only target encoding bitrate
is available in LLLS, whereas the actual size fluctuates along
with video content change, and the inter-chunk idleness also
adds uncertainty on download complete time. Therefore, pre-
dicting bandwidth in LLLS manifests circular dependency on
complicated time intervals and becomes significantly difficult.
Existing predictions like Lumos [10] and DeeProphet [11]
are essentially designed for VOD scenario, which assumes
accurate future segment size or ignores the irregular and
uncertain time sampling features in LLLS. While the SOTA
time series models like TimesNet [12] exhibit high accuracy,
they also overlook the complicated circular dependency in
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streaming application.
Various Uncertainty for LLLS ABR. The culmination

of aforementioned measurement and prediction errors, com-
pounded by stochastic size variation and chunk idle times,
results in imprecise key variable evolution like download time
and buffer estimation. This severely undermines the ABR’s
modeling ability and bitrate decision, because the optimized
QoE based on inaccurate variables and metrics can degrade
significantly without lower bound guarantees. Existing LLLS
ABRs like LoL+ [7] neglect such inherent uncertainty, leading
to suboptimal bitrate decisions and poor QoE.

In this work, we address the challenges and propose the
AAR (Accurate and Robust) framework which comprises 3
corresponding modules:

Hybrid Bandwidth Measurement. We first identify the
root cause of poor measurement as lacking CMAF chunk send-
ing pattern within a segment. Therefore, we propose to attach
a Flag parameter within the HTTP header from the server,
indicating the number of burst CMAF chunks and that the rest
of the chunks may contain idle time. With the single parameter,
we obtain segment and chunk-level download statistics without
idle time. We then propose a heuristic measurement algorithm
which accumulates the consecutive valid HTTP chunks to ob-
tain accurate bandwidth via size weighted average. To further
enhance accuracy, we also leverage a bi-directional GRU [13]
based neural network (NN) to capture more complex features
via Flag-based feature aggregation. Finally, we obtain a hybrid
method to combine both approaches with a confidence score
from the NN output. By searching for an optimal threshold,
we learn to select the best method across different network
traces.

Flow-based Bandwidth Prediction. To address the cir-
cular dependency issue, we propose to leverage conditional
normalizing flow [14] (cNF) to learn the joint distribution
of future bandwidth, varying size and download timestamp
simultaneously, given the historical variable distribution and
target bitrate of future segments as conditions. In this way, we
incorporate the inherent uncertainty from size and idle time to
derive proper bandwidth prediction. Moreover, we propose a
bitrate-aware transformer to learn the condition representation.
It comprises a novel dual-timestamp embedding tailored to ir-
regular time series and an attention mechanism, where bitrates
are mapped to queries to learn the impact of ABR decision
on bandwidth distribution.

Robust ABR with Max-min QoE. To achieve robust
performance under various LLLS uncertainties, we propose
a novel max-min objective for ABR to guarantee the lower
bound of QoE caused by the aforementioned bandwidth,
varying segment size and idle time. To derive the min solution,
we first propose a theorem that by applying the upper bound of
download time, we can model the comprehensive uncertainty
and estimate the worst LLLS-QoE. We also propose an addi-
tional theorem to guarantee that such max-min optimization
falls back to typical QoE objective when the uncertainty is
eliminated, thanks to our careful upper bound estimation. To
derive the max solution, we further propose a new LLLS state
evolution model including adjusted buffer and latency. Finally,
we apply Model Predictive Controller (MPC) combined with
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Fig. 1. Idle time between CMAF chunks and HTTP chunks.

our bandwidth prediction in an autoregressive way to optimize
our novel objective for optimal bitrates.

We implement our 3 modules in LL-DASH-based stream-
ing system and conduct extensive real-world experiments,
including 7 bandwidth measurement baselines, 7 prediction
algorithms and 6 representative ABRs throughout four network
trace datasets. The results demonstrate that AAR outperforms
existing methods with 11%-83% absolute error reduction in
measurement, 2%-17% in prediction. We also improve the
overall LLLS QoE by up to 102%. The ablation study also
validates the efficiency of each module design of AAR.

Contributions. We summarize our contributions as follows:
• To address the idleness in bandwidth measurement, we

propose a lightweight server-side Flag to distinguish burst
consecutive chunk transmissions from idle periods. We then
propose a hybrid method combining our robust heuristic
algorithm with Bi-GRU-based model via a learned confidence
score to achieve high-fidelity estimation.
• To address irregular bandwidth prediction with circular

dependency, we are the first to leverage conditional normaliz-
ing flow to jointly model the probability distributions of band-
width, segment size, and download time. We further propose
a novel bitrate-aware transformer architecture to capture the
intrinsic impact of ABR decisions on variable distribution.
• To address various uncertainties in LLLS ABRs, we for-

mulate a novel max-min QoE objective designed to guarantee
the worst performance. We provide two theorems based on the
upper bound of download time to derive the worst-case QoE
with adaption guarantee. We also propose an LLLS tailored
state evolution model coupled with MPC algorithm to solve
for the optimal bitrate.
• We carry out extensive real-world experiments and

demonstrate our AAR outperforms 7 measurement baselines,
7 prediction algorithms and 6 LLLS and VOD ABRs with
significantly higher accuracy and QoE.

Improvements Over Previous Version. This work (AAR)
is built on top of the previous conference version (AAR-Base
[2]), we summarize the new contribution as below:
• AAR-Base implements only heuristic weighted average

bandwidth measurement. We propose a new hybrid model in-
cluding NN-based prediction to capture more intrinsic features.
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(a) I-moof (b) Fleet
Fig. 2. Examples of existing bandwidth measurements’ impact on fixed ABR’s
performance.

• AAR-Base directly uses sliding average for bandwidth
prediction. We propose a new cNF-based model with novel
feature embedding to learn joint distribution to circumvent
circular dependency.
• AAR-Base coordinates the 3 modules in a sequential way.

We propose to adjust the bandwidth prediction with the ABR
bitrate as input in an autoregressive way. We also improve
the size estimation from bitrate computation to cNF-based
prediction.

II. BACKGROUND AND MOTIVATION

A. Challenge 1: Bandwidth Measurement in LLLS

Background. To meet the strict low-latency requirements
of LLLS, advanced streaming protocols combine CMAF
with CTE. By transmitting smaller CMAF chunks instead
of whole segments, this approach significantly reduces end-
to-end latency. However, this architectural shift introduces a
fundamental challenge for accurate bandwidth measurement.
The client’s perceived download time for a segment in VOD
scenario no longer reflects the true network transmission time,
because it can be inflated by server-side idle periods in CMAF
chunks and by extension, the HTTP chunks. This idleness
arises when a client requests the latest segment at the live
edge that is still being encoded, which is dependent on video
codec and the content complexity.

We illustrated the issue in Fig. 1, assuming the segment
comprises three CMAF chunks, each divided into several small
HTTP chunks, where No.4 and No.6 contain parts of adjacent
CMAF chunks. Case 1 represents the catch-up phase when the
requested segment is behind the encoding process, therefore
the whole segment is delivered without pause. While in case
2, the third CMAF chunk arrives at the edge server after some
idle time, and the first two are sent out in 5 consecutive HTTP
chunks, followed by the later 6-7 HTTP chunks, where No.6
manifests idle time and No.4 does not. Therefore from the
client’s perspective, which only observes the arrival times of
HTTP chunks, there’s no way to distinguish which chunk is
valid for bandwidth measurement.

Previous work. Existing countermeasures fail to robustly
solve this issue. For example, LoL+ [7] attempts to measure
the download start and complete time of each CMAF chunk
by timing the interval between HTTP chunks containing the
moof and mdat boxes. Then the average bandwidth of all
CMAF chunks denotes the segment-level results. However,
as shown in Fig. 1 (Case 2), the idle time between CMAF
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Fig. 3. The circular dependency in LLLS bandwidth prediction because of
the unknown segment size and inter-chunk idle time.

chunks is reflected in basic HTTP chunks. The final chunk
of a burst (e.g., No. 6) can itself contain idle time, leading to
overestimation of the end time of CMAF chunk 2. To alleviate
this issue, Fleet [8] proposes to aggressively filter the last
HTTP chunks, and then average all valid consecutive samples
as segment bandwidth. However, it also discards valid data
like No. 4, and the HTTP chunks are significantly smaller
(1500 bytes), whose download time can be easily disturbed
by random noise, leading to bursty bandwidth results.

We validate the analysis through real-world experiments
using a rate-based ABR, which only picks the highest bitrate
within available bandwidth, refer to Section IV-A for detailed
setup. Fig. 2 shows the impact of these measurement errors
on ABRs, BW-M, P, R and bitrate represent the measured,
predicted, real bandwidth and ABR’s bitrates respectively. In
Fig. 2(a), the I-moof (from LoL+ [7]) measurement scheme
almost consistently underestimates bandwidth due to the idle
time in the last HTTP chunk, causing the ABR to remain
at the lowest bitrate (200Kbps) and waste network capacity.
Conversely, in Fig. 2(b), Fleet’s noisy HTTP bandwidth over-
estimation causes the ABR to select bitrates (1000Kbps) that
exceed the available capacity (e.g., around segments 75 and
120), triggering stalls and degrading QoE.

Solution. To solve this issue, the client side requires ad-
ditional information regarding the server’s encoding process
to identify the sending pattern and the actual valid HTTP
chunks. In this way, we can preserve the burst transmission
and discard the rest of the HTTP chunks which contain the
start and complete boxes of adjacent CMAF chunks. With the
valid HTTP chunks’ statistics, we can develop both heuristic
and learning based models to derive robust and accurate
measurements, which can be further combined via fidelity-
aware value to ensure comprehensive performance.

Insight 1: To achieve accurate bandwidth measurement,
it is crucial to obtain external information from the server
to identify idle periods. This allows for the aggregation
of valid data points to create heuristic and learning based
methods.
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(a) Relative Error for estimated size
and predicted buffer evolution

(b) Variable Video Size (c) Variable Idle Time

Fig. 4. Buffer prediction error due to varying segment size and idle time under constant bandwidth. We directly use the target bitrates and duration to compare
with the actual size.

B. Challenge 2: Circular Bandwidth Prediction

Background. Beyond accurate measurement, forecasting
future bandwidth in LLLS presents a more intricate challenge.
Regular time series prediction requires only historical data to
estimate the future because they share the same time interval,
e.g. weather temperature within a month. However, segment-
level bandwidth is essentially an irregular time series [9],
[15] because different segments occupy varying intervals from
download start and completion time. Therefore in order to
predict the bandwidth, we need accurate timestamps which
rely on both yet unavailable segment size and the predicted
bandwidth itself. We illustrate this issue in Fig. 3. Specifi-
cally, assume we have downloaded 2 segments during interval
(ts1, t

e
1) and (ts2, t

e
2). The rendered bandwidth c1 and c2 can

be derived via our accurate measurement. To predict the next
c3 = f(ts3, t

e
3), the circular dependency arises: the ending

te3 = ts3+
s3
c3

timestamp is uncertain because we lack the exact
segment size s3 and the not yet predicted c3. For example, we
need to query longer te3 in advance if the target c3 is low and
vice verse, which is however impossible to determine in the
first place.

Moreover, LLLS presents more sophisticated problems.
On the one hand, the future segment size is unknown, and
estimation via target bitrate varies significantly depending on
the content complexity. It also requires the ABR decisions
prior to the bandwidth prediction, which imposes module
coordination instead of typical sequential pipeline. On the
other hand, we also cannot derive the starting ts3 due to the
inter-segment idleness ∆t2 from systematic latency. We clarify
that ∆t stems from fetching pause from player setting, which
is different from inter-chunk idleness in Challenge 1. As a
result, neither ts3 nor te3 can be accurately determined, and the
future bandwidth varies with different possible time intervals,
as indicated by 3 different background colors.

Previous work. Existing advanced bandwidth prediction
algorithms like VOD-based Lumos [10] and delay-based pre-
dictors CS2P [16] and T3P [17] all assume knowledge of re-
maining segment sizes and typical transmission without inter-
chunk idle time, which clearly differs from various uncertainty
features in LLLS and thus renders them inapplicable. While
hybrid prediction method DeeProphet [11] is designed for
live streaming, it still overlooks the essence of irregular time
series and directly forecasts the bandwidth alone, which fails

to capture the varying time interval and break the circular
dependency. Even sophisticated time-series models like Times-
Net [12], while powerful, are not designed to resolve this
application-specific circularity or to account for the causal
impact of ABR’s bitrate.

Solution. To break the dependency, the key idea is not
to predict each variable sequentially, but to directly learn
all the uncertain variables in joint probability distribution
p(c3, s3, t

s
3, t

e
3|past1,2, bitrate3) from certain input like ABR-

decided bitrates and historical download statistics. Therefore,
we need to develop a distribution mapping model like normal-
izing flow [18] to handle multiple variable prediction. It also
requires a novel feature embedding to tackle the time interval
and capture the relationship between target bitrate and other
variables like attention mechanism.

Insight 2: To accurately forecast bandwidth in LLLS, we
need to learn the joint distribution of bandwidth related
variables, while also capturing the causal impact of ABR
decision with irregular time embedding.

C. Challenge 3: Robust ABR Control under Uncertainty

Background. Typical ABRs are designed for VOD scenar-
ios with more accurate bandwidth and an explicit download
process. Therefore the optimized QoE metrics like bitrates
and rebuffering penalty can adequately reflect the future per-
formance and guide the ABR’s bitrate selection. However,
LLLS introduces a new set of uncertainties that challenge
the assumption of accurate variables and QoE evaluation.
Apart from the aforementioned bandwidth measurement and
prediction issues, we also lack the specific segment size
and face significant variability in inter-chunk idle time. This
inherent uncertainty falsifies the ABR’s download time and
buffer evolution and eventually, the QoE metrics. As a result,
traditional max-QoE models fall short in guiding ABRs to
make robust decisions under various LLLS uncertainties.

We illustrate the impact of these variables in Fig. 4. We
conduct experimental analysis with the representative VOD
ABR RobustMPC (RMPC) [19] over a stable network link,
isolating the impact of size and idle time uncertainty. Fig. 4(a)
shows that even moderate errors in size estimation can lead to
significant buffer prediction errors. Especially when with lower
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TABLE I
SUMMARY OF NOTATIONS. NOTE THAT WE MAY USE VARIABLES ACROSS DIFFERENT CATEGORIES.

Category Notation Meaning Category Notation Meaning

Measurement

N number of segments

ABR

Ri bitrate for segi
K number of CMAF chunks in a segment Nh future segment horizon of MPC
Zi number of HTTP chunks in segment i si/si,j size of segi/cci,j
segi segment i, i ∈ [1, N ] ui,j idle time before downloading cci,j
cci,j CMAF chunk j of segi, j ∈ [1,K] ci available bandwidth for segi
hci,z HTTP chunk z of segi, z ∈ [1, Zi] pci predicted bandwidth for segi
ti,z arrival time of hci,z of segi di/di,j estimated download time of segi/cci,j
hi,z size of hci,z of segi d∗i /d

∗
i,j actual download time of segi/cci,j

ki Flag for segi dui /d
u
i,j upper bound of download time of segi/cci,j

mi,j 0/1 mask of cci,j from Flag ki bi,j buffer after downloading cci,j

Prediction

Np length of historical observation T CMAF chunk duration cci,j
tsi download start time of segi li/li,j latency after downloading segi/cci,j
tei download complete time of segi ri/ri,j rebuffer time after downloading segi/cci,j
∆ti inter-segment idleness before segi pi/pi,j playback rate after downloading segi/cci,j

size estimation, RMPC tends to underestimate the download
time and overestimate the next buffer, which is very likely
followed by a stalling event due to smaller buffer in LLLS. In
detail, Fig. 4 (b) presents the size error PDF of a 10 minutes
video encoded at different bitrates (Kbps), which validates the
significant gap of even twice the size estimation. Furthermore,
Fig. 4(c) shows that server and client-side idle time can
randomly constitute a significant fraction of the total download
duration, severely falsifying the final buffer prediction. More
importantly, a small mismatch in buffer prediction leads to
obvious QoE degradation (refer to Table X in ablation study),
e.g., either wasting bandwidth or causing stalling.

Previous work. Existing ABRs all fail to address the above
uncertainty issue in LLLS due to suboptimal QoE objec-
tive. For instance, RobustMPC (RMPC) [19] estimates the
bandwidth lower bound and iterates all bitrates combination
based on the evolution model to maximize the expected QoE.
Advanced methods like Pensieve [20] and Comyco [21] lever-
age reinforcement learning or imitation learning to achieve
better performance from exploration or expert trajectory. Even
LLLS ABRs like LoL+ [7] still operate on deterministic state
estimates. They are not architected to systematically handle
the multi-faceted inherent uncertainty

Solution. To ensure reliable performance, we need to incor-
porate the comprehensive uncertainties into the QoE model
and the ABR logic. By guaranteeing the lower bound of
the worst case, we can derive better QoE expectation from
stochastic variables.

Insight 3: To address the various uncertainties in LLLS,
we need to guarantee the worst case performance via a
robust QoE objective and control logic.

III. PROPOSED METHOD: AAR
A. Overview of AAR

We first summarize the frequently used notations in Table
I. To address the 3 challenges of inaccurate measurement,
circular prediction, and robust control in LLLS, we propose
AAR, an integrated framework comprising three co-designed

Algorithm 1: Heuristic bandwidth measurement
Input: Flag=ki, received all HTTP chunks hci,z , fetch

request time treq
Output: chei

1 if ki == K then return si−hi,1

ti,Zi
−ti,1

;
2 bw ← [];
3 T s, T e ← extract(hci,z); ▷ CMAF extraction
4 end← T s

ki+1 == T e
ki
? T e

ki
− 1 : T e

ki
; ▷ Burst chunks’

last HTTP chunk
5 bw.append([

∑end
z=2 hi,z

ti,end−ti,1
,
∑end

z=2 hi,z]); ▷ [bandwidth, size]
6 for j ← ki + 1 to K do
7 end← T s

j+1 == T e
j ? T e

j − 1 : T e
j ;

8 bw.append([
∑end

z=Ts
j
+1 hi,z

ti,end−ti,Ts
j

,
∑end

z=T s
j +1 hi,z]);

9 end
10 chei ←

∑
bw[:,0]×bw[:,1]∑

bw[:,1] ; ▷ Size weighted averaging
11 return chei

modules. As illustrated in Fig. 5, the AAR pipeline operates
as follows: when the client requests a segment, the server
delivers via CTE-based HTTP chunks upon available CMAF
chunks, along with our lightweight Flag parameter. (1) The
Hybrid Measurement module leverages this Flag to isolate
consecutive chunks and identify burst transmission. With the
valid data, it derives both NN-based and heuristic measurement
and selects via confidence score. (2) The prediction module
formulates historical data statistics, along with the ABR’s
prospective bitrate choice. Then it derives bitrate-aware atten-
tion features as the condition for normalizing flow input. The
inverse variable distribution can yield future bandwidth. (3)
The ABR module optimizes a max-min QoE model via MPC
and LLLS state evolution model, backed up by theoretical
guarantees. For each future segment within horizon Nh, the
corresponding bandwidth is obtained from prediction module
in an autoregressive manner. Finally, the client requests the
optimal next bitrate again in the pipeline.
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Fig. 5. Overview of the AAR framework. We first obtain the requested segment with our Flag parameter, then we leverage a hybrid model to derive accurate
bandwidth measurement via confidence evaluation. The prediction module takes historical statistics with target bitrate from ABRs to yield future bandwidth.
Finally, the ABR algorithm optimizes a max-min QoE objective with LLLS evolution model to derive optimal bitrate.

B. Hybrid Bandwidth Measurement

Identify Valid Chunks. Based on insight 1, we tend to
identify the CMAF chunk sending pattern to accumulate con-
secutive HTTP chunks. However, this information is available
only at the server side, which records and decides how many
CMAF chunks are cached for a burst. Therefore, we propose
to attach a Flag=ki ∈ [0,K] parameter for segi in CTE’s
header to denote the burst chunk number within the segment.
This signal allows the client to definitively distinguish between
HTTP chunks corresponding to this burst transmission and
subsequent chunks that may have been delayed by the encod-
ing process.

To construct the valid chunks for measurement samples,
we first propose an improved CMAF boundary extraction
algorithm over LoL+ [7] introduced in Section II-A, which
checks the CMAF boundary only once in an HTTP chunk.
We instead tend to keep parsing the same hci,z in a loop in
case a single HTTP chunk contains multiple CMAF chunks
(e.g., No.4 and 6 in Fig. 1). In addition, we identify and fix
some patches in offset setting during the moof+mdat boxes
search in the latest dash.js. With accurate CMAF boundary
(the sequences of HTTP chunks), we can confirm that the
first ki CMAF chunks are valid without idleness. In contrast,
the subsequent CMAF chunks contain idle time that requires
separate filtering. We then discard the HTTP chunks that
contain the moof (starting) box of the next adjacent CMAF
chunk, because the arrival timestamps include the encoding
delay according to the Flag parameter.

Heuristic Approach. With the above valid chunks, we
first develop a heuristic measurement as a robust baseline.
Due to the bursty bandwidth from HTTP-level chunks whose
transmission can be easily perturbed, as demonstrated in Fig.
2, we opt to derive CMAF-level chunks’ bandwidth. We
aggregate the valid HTTP chunks as total size and compute the
download duration as the arrival time interval, which yields a
valid bandwidth sample without idleness. To reduce the noise
deviation from small samples, we propose to leverage size
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Fig. 6. The neural network of bandwidth measurement module.

weighted average to guarantee the priority of the ki burst
chunks, which contain an I frame that makes up 50% of the
segment size.

We present the detailed procedure in Algorithm 1. First of
all, we directly compute the segment bandwidth as in VOD if
ki is exactly K (line 1). Then we identify the CMAF boundary
from hci,z via our improved searching algorithm (line 3), we
also discard the last hc if it comprises the next cc to filter idle
time (line 4). The resulting T s and T e store the start and end
sequence of HTTP chunk for each CMAF chunk, followed by
our first and foremost bandwidth sample that comprises all the
hci,z for the burst ki cci,j (line 5). Finally, we compute the
bandwidth of smaller CMAF chunks (lines 6-8), followed by
size weighted averaging (line 10) to ensure the priority of our
burst chunks’ bandwidth.

Hybrid Model. To further enhance the accuracy, we pro-
pose a learning-based model to directly capture the intrinsic
relationship between CMAF and segment-level bandwidth,
while we can also incorporate the robust heuristic results to
avoid NN overfitting via fidelity evaluation. We first formulate
the necessary input features as follows:
• Segment-level statistics xseg ∈ R5 including the segment

size si, the actual and target bitrate R̂i and Ri, the total
download time tei − tsi that includes idleness, and the server-
side Flag=ki.
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• CMAF-level statistics xcmaf ∈ RK×5 with each including
the CMAF chunk size si,j , the idle time from previous chunk
ui,j , the CMAF download time di,j , the CMAF bandwidth
si,j/di,j and a Flag-based mask mi,j .

The segment features xseg denote coarse-grained download
process that includes idleness, while the K CMAF features
xcmaf manifest more accurate fine-grained details. The mask
mi,j denotes whether chunk cci,j is included in the burst
transmission pattern, i.e. mi,j = 1 if j ≤ ki and 0 otherwise.
The detailed neural network architecture is illustrated in Fig. 6.
We leverage a simple Multilayer Perceptron (MLP) to map
xseg into fseg ∈ R64 and a bi-directional GRU network
to capture the temporal CMAF features fcmaf ∈ RK∗64.
Specifically, we aggregate the burst and idle chunk features
from GRU with the Flag mask mi,j to yield f1 ∈ Rki∗64

and f2 ∈ R(K−ki)∗64. Then we concatenate fseg , the average
of the mean of f1 and f2 to form the final feature vector
fmea ∈ R128:

fmea = [fseg,
mean(f1, dim = 0) +mean(f2, dim = 0)

2
]

(1)
Finally, we apply two separate MLPs to map fmea to NN

bandwidth estimation cnni and a confidence score p, which
evaluates how likely the measurement is more accurate than
the simple average result chei . The training loss is based on the
mean squared error (MSE) between the predicted bandwidth
cnni and the ground truth ci, while confidence is optimized via
cross-entropy loss, i.e.

Lmea = MSE(cnni , ci)+λmea∗H(p, I(|cnni −ci| ≤ |chei −ci|))
(2)

where I is the indicator function. In this way, we maximize
probability p if cnni is more accurate. Then we can derive an
accurate and robust measurement as follows:

ci = I(p > P ) · cnni + I(p ≤ P ) · chei (3)

Fallback Mechanism. where P is an optimal threshold that
maximizes the overall accuracy. In practice, we search for P
with validation datasets. In this way, we can leverage p to
avoid the potential bias or overfitting in certain distribution.
For example, NN models may exhibit higher accuracy for
most regular and stable bandwidth as seen in the training
dataset. In cases when p ≤ P , e.g. low bandwidth samples that
induce longer download time, we will fall back to our heuristic
methods, because it performs better with size weighted average
due to less perturbation by random noise.

C. Bandwidth Prediction via cNF

To address the circular dependency challenge outlined in
Insight 2, we argue that bandwidth is not an independent
variable but part of a complex system of interdependent dis-
tribution. We therefore propose a novel prediction framework
that leverages conditional normalizing flows (cNFs) to learn
the joint probability distribution of future network conditions,
explicitly conditioned on the ABR’s decisions and historical
statistics.

cNF in LLLS. A normalizing flow [18] is a mapping
f from RD to RD that transforms a complex, target data

Bandwidth
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Download

End Time

𝑁𝑝*Segment

level

Target 

Bitrate

Download

Start Time

MLP+Sin: 32-1

MLP: 16-64
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MLP: 64

Cat

Query

MLP: 64

Key

Value

Multi-head

 Attention

Normalizing
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Inverse

ABR 

Bitrate Candidate

Fig. 7. The neural network of bitrate-aware transformer as feature condition
for normalizing flow.

distribution x into a simple base probability distribution z (e.g.,
a standard multivariate Gaussian) through a series of invertible
and differentiable transformations, i.e.

pX(x) = pZ(f(x))

∣∣∣∣det(∂f(x)

∂xT

)∣∣∣∣ (4)

where pX and pZ are the probability densities, z = f(x)
and the inverse function x = f−1(z) can reconstruct the target
data from normal distribution. The determinant of the Jacobian
matrix, det(∂f(x)/∂xT ) accounts for the change in volume
induced by the transformation. A conditional normalizing flow
parameterized by θ extends this by making the transformation
dependent on a context vector h, i.e., z = f(x;h, θ) and
x = f−1(z;h, θ). In the context of LLLS, we leverage
Np historical segment-level features xi−Np

, . . . , xi−1 and the
ABR’s intended bitrate choice Ri as the conditioning context
hi to predict the future segment characteristics xi, formulated
as follow:

xi \Ri = f−1(zi;hi, θ) = f−1(zi;xi−Np
, . . . , xi−1, Ri, θ)

(5)
where hi = F (xi−1

i−Np
, Ri) and xi = {ci, Ri, si, t

s
i , t

e
i} ∈

R5, i ∈ [1, N ]. F converts the statistics into high-dimensional
representation. Note that we exclude Ri in prediction since it
comes from the ABR decision. As explained in Section II-B,
si depends on target bitrate Ri and complex codec setting, tsi
can be perturbed by inter-segment idle time ∆ti, while tei is
determined by the predicted ci, si and complicated inter-chunk
idleness ui,j . Therefore, by modeling the joint distribution
of these uncertain variables, we can derive a more accurate
and robust bandwidth within the expected future distribution.
Next we will discuss the cNF architecture and the constructed
context features hi.

cNF via RealNVP. We implement the flow using a stack
of conditional affine coupling layers, based on the RealNVP
architecture [22]. Each layer splits the input future x = xi \
Ri into two parts, xa and xb. It leaves xa unchanged while
transforming xb using an affine transformation whose scale
and shift parameters, (s, t), are generated by a neural network
that takes xa and the condition vector h as input:

za = xa and zb = xb ⊙ exp(s) + t (6)

where (s, t) = MLP(xa, h). This transformation is easily
invertible, and its Jacobian determinant is simply the sum of
the elements in s, making log-likelihood computation efficient.
We stack multiple such layers, flipping the roles of xa and xb

at each step to ensure all dimensions are transformed.
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Bitrate-Aware Transformer. The key to flow transforma-
tion is the context vector hi = F (xi−1

i−Np
, Ri). To this end,

we design a Bitrate-Aware Transformer to capture complex
patterns and dependencies, as shown in Fig. 7. The detailed
modules are as follows:
• Irregular Time Embedding: The segment-level bandwidth

is an irregular time series with different time intervals. To
efficiently capture the temporal dependency, we first encode
the timestamp for each past segment by computing its mid-
point (tei + tsi )/2 and duration tei − tsi . These two features
are then passed through parallel linear and sinusoidal layers,
where dimension i is defined as:

ϕ(T )[i] =

{
ω0hT + α0h, if i = 0

sin(ωihT + αih), if 0 < i < 32
(7)

where T = [(tei + tsi )/2, t
e
i − tsi ]. The concatenated output is

time embedding ϕ(T ) ∈ R32. By combining with bandwidth
and segment size, we have the Np historical statistics xhis ∈
RNp×34.
• Bitrate-as-Query Attention: We propose a novel QKV

attention mechanism to explicitly model the influence of the
ABR’s decision. The historical data xhis are projected to form
the Key (K) and Value (V) vectors. Crucially, the Query (Q)
is instead a learned embedding of the future target bitrate, Ri,
which motivates the model to learn an attention pattern that
specifically answers: ”Given this history, what context is most
relevant if I choose bitrate Ri?”

With the QKV projection features, we can obtain the
attention scores as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (8)

where dk = 64 is the dimension of the key vectors. Finally,
our transformer yields the final context features hi with multi-
head attention scores, which are then used as the condition for
the cNF transformation.

Training and Inference. Training (Forward): The model
parameter θ is trained by minimizing the batch negative log-
likelihood (NLL):

Lpre = −
∑
i

log pX(xi;hi, θ) (9)

where hi is the context features from our transformer.
Inference (Inverse): To make a prediction, we collect the his-

torical data and a candidate future bitrate Ri from ABRs. The
model first computes the corresponding condition vector hi.
Then we sample a vector z from the base Gaussian distribution
and pass it through the inverse transformation f−1(z;hi, θ).
This generates a sample xi datapoint. By drawing multiple
times, we can derive the expected bandwidth ci as the mean
of the samples.

D. Robust ABR with Max-min QoE

To address the profound challenge of bitrate control under
uncertainty (Insight 3), we depart from conventional ABR
designs that optimize for an expected QoE. Instead, we design
a robust control policy that explicitly optimizes for worst-case
performance, thereby guaranteeing a lower bound on QoE.

Max-min Objective. Following established QoE metrics
from works like LoL+ [7] and standards in [23], the standard
LLLS objective is to select a sequence of bitrates Ri to
maximize a utility function that rewards high video quality Ri,
low video rebuffering time ri, low latency li, normal playback
rate pi → 1 and low bitrate switches |Ri −Ri−1|, formulated
as:

QoE =

N∑
i=1

(α1Ri−α2ri−α3li−α4|pi−1|)−
N∑
i=2

α5|Ri−Ri−1|

(10)
where αk > 0, k ∈ [1, 5] are weights for each metric. As

established in Section II-C and Fig. 4, this QoE is subject
to uncertainty from idle time ui,j , segment size variation si,
and bandwidth prediction error pci. To create a robust ABR,
we formulate a max-min objective that seeks to maximize
the QoE achieved under the most adverse realization of these
uncertainties:

max
Ri

min
{ui,j ,si,pci}

QoE (11)

LLLS-Tailored Evolution Model. To optimize this objec-
tive, we must first establish how these uncertainties propagate
to the QoE metrics. Existing segment-level models are inad-
equate for the fine-grained dynamics of LLLS. We therefore
propose a new, chunk-level state evolution model:

di,j = ui,j +
si,j
pci

(12)

bi,j = max(b−i,j − p−i,j × di,j , 0) + T (13)

ri,j = max(di,j −
b−i,j

p−i,j
, 0) (14)

li,j = l−i,j − (p−i,j − 1)×min(di,j ,
b−i,j

p−i,j
) + ri,j (15)

pi,j =


f(li,j) > 1, if li,j − ltarget > δ

1, if |li,j − ltarget| < δ

f(li,j) < 1, if li,j − ltarget < −δ
(16)

where δ is the prefixed threshold and xi,j , x ∈ {b, p, l} is
the attribute for the jth CMAF chunk of segi, x−

i,j = xi,j−1

if j > 1 and xi−1,K if not. In LLLS, ri =
∑K

j=1 ri,j ,
si =

∑K
j=1 si,j and li/pi is the final latency/speed after

downloading all the CMAF chunks. Specifically, the key
variable is the download time di,j which includes idle time
ui,j and the actual transmission time si,j

pci
, where si,j is the

estimated CMAF chunk size using prefixed bitrates. With di,j ,
we can predict the buffer bi,j change by draining p−i,j × di,j
seconds of cached video and appending a new CMAF chunk
duration T , along with possible stalling ri,j .

Notably, our latency evolution model in Equ. 15 first catches
up or loses behind at speed p−i,j > 1 or p−i,j < 1. The
magnitude is up to the download time di,j if there is no

rebuffering, otherwise up to
b−i,j
p−
i,j

because there’s no more
content to playback after that. This corrects a critical over-
sight in prior work like Tightrope [24] and Fleet [8], which
incorrectly model latency evolution as being dependent on the
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total download time di,j even during a stall. Regarding the
playback speed p−i,j , it depends on current latency deviation
around the threshold δ of target latency ltarget, f function
maps latency to speed according to a specific player.

Solving the Inner Minimization. Our chunk-level model
reveals that all sources of uncertainty are reflected by the
download time di,j . This allows us to simplify the inner
minimization problem significantly. The objective becomes:

max
Ri

min
di,j

QoE (17)

This transformation is valid because the uncertain variables
ui,j , si, pci only affect the QoE penalty terms (rebuffering and
latency) via their impact on di,j . We can therefore decompose
the objective 11 into:

max
Ri

N∑
i=1

min
di,j∈[0,du

i,j ]
[g1(Ri, pi) + g2(di,j)] =

max
Ri

N∑
i=1

g1(Ri, pi) + min
di,j∈[0,du

i,j ]
g2(di,j) (18)

where g1(Ri, pi) = α1Ri−α4|pi−1|−α5|Ri−Ri−1| and
g2(di,j) = −α2ri − α3li. The key challenge is to identify the
di,j that maximizes the rebuffering and latency. Note that we
cannot accurately predict the actual download time like Fugu
[25] and T3P [17] in VOD because it requires the knowledge
of the exact next segment size. The solution is non-trivial,
as latency li,j is not always monotonic with respect to di,j ,
while rebuffering ri,j is. We provide a formal solution to this
problem in Theorem 1.

Assumption 1: Assume that dui,j ≥ T , meaning that each
CMAF chunk exhibits at least T idle time waiting for the
captured frames on the ingest side.

Theorem 1: Let Assumption 1 hold, the min solution in
Equ. 18 is when and only when for each di,j = dui,j , i ∈
[1, N ], j ∈ [1,K].

Proof 1 (Theorem 1): First of all,

g2(di,j) = −α2

K∑
j=1

ri,j − α3li

= −α2

K∑
j=1

max(di,j −
b−i,j

p−i,j
, 0)− α3li

(19)

Therefore ri,j ∝ di,j . As for latency:

li,j =


l−i,j − (p−i,j − 1)× b−i,j

p−
i,j

, if di,j <
b−i,j
p−
i,j

l−i,j + di,j − b−i,j , if di,j ≥
b−i,j
p−
i,j

(20)

Therefore li,j ∝ di,j except when p−i,j > 1 and di,j <
b−i,j

p−
i,j

.

However, this is when l−i,j − ltarget > δ and to achieve the
term, li,j would first go through |l−i,j − ltarget| ≤ δ stage
where p−i,j = 1, therefore li,j = ri,j . This means there must
have been rebuffering events for the first time p−i,j > 1 and

b−i,j = T , then we have
b−i,j
p−
i,j

< b−i,j = T , and that li,j first

decreases and then increases as di,j increases, di,j ∈ [0, dui,j ].

Algorithm 2: AAR’s LLLS tailored ABR
Input: estimated player idle time uclient, past CMAF

chunk size s∗i,j and idle time u∗
i,j , j ∈ [1,K],

future horizon Nh, past d∗j , j ∈ [i− 4, i]
Output: Ri+1

1 ∆d =
∑i

j=i−4 |d∗
j−dj |

5 ;
2 for each bitrate combination do
3 for k ← i+ 1 to i+Nh do
4 for j ← 1 to K do
5 uk,j ← u∗

i,j ;
6 if j == 1 then uk,j ← uk,j + uclient;
7 pck, sk =BandwidthPrediction(Rk);
8 sk,j ←

sk×s∗i,j
s∗i

;
9 dk,j ← uk,j +

sk,j

pck
;

10 duk,j ← dk,j +
|∆d|×dk,j

dk
;

11 Other variable evolution in Equ. 13-16;
12 end
13 end
14 Compute QoE as in Equ. 18 with Theorem 1;
15 end
16 Ri+1 ← argmax(QoE);
17 return Ri+1

TABLE II
BANDWIDTH (KBPS) DISTRIBUTION OF DATASETS.

Datasets
Metrics Mean Std 25th 50th 75th

FCC 1526 1288 596 901 3426
Oboe 2966 1552 1765 2940 3957

3G/HSDPA 1933 1053 1130 1836 2472
Online 8594 5674 2789 8115 15359

Based on Assumption 1, li,j(dui,j) ≥ li,j(T ) = l−i,j = li,j(0).
Therefore we can still set di,j = dui,j to get the maximum

latency li,j . Moreover, after this stage, ri,j = dui,j −
b−i,j
p−
i,j

> 0,
which means next time bi,j = T , and this process continues.

In summary, we can always set di,j = dui,j to derive the
maximum li, ri and the minimum g2(di,j). ■

Upper Bound Estimation. To apply Theorem 1 in practice,
we collect the past actual segment download time d∗i from the
player feedback to compute the maximum estimated download
time deviation. Specifically, we propose to store historical
segment level d-error as ∆di = |d∗i − di|, then we distribute
such ∆di proportionally to each di,j by the ratio over di to
obtain the upper bound dui,j = di,j +

|∆di|×di,j

di
. Note that we

do not store ∆di,j because the actual d∗i,j is not available since
the sending time can be falsified by idle time in HTTP chunks.

To guarantee that Theorem 1 does not impact the maximum
QoE when the LLLS uncertainty is eliminated, we propose
Theorem 2 to justify our dui,j computation:

Theorem 2: With accurate ui,j , si,j and pci, objective 18
falls back to regular objective maxRi

QoE.
Proof 2 (Theorem 2): The proof is intuitive: accurate
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TABLE III
BANDWIDTH MEASUREMENT PERFORMANCE FOR DIFFERENT METHODS ACROSS 4 DATASETS. WE PRESENT MAPE↓, MAE↓ AND RMSE↓. FOR MAE

AND RMSE, WE DIVIDE THE RAW VALUE BY 100 TO ALIGN THE NUMBER PRECISION. THE RAW RESULTS CAN BE FOUND IN ABLATION STUDY IN TABLE
VII.

Dataset Metrics AAR AAR-Base Fleet I-moof Moof AAST Seg Default DeeProphet

MAPE 2.31±0.85 2.55±0.97 21.5±4.07 18.7±2.99 68.2±5.53 24.9±4.50 45.1±6.54 5679 11.8
MAE 0.27±0.06 0.34±0.08 2.02±0.15 2.09±0.33 9.81±2.18 4.65±1.43 8.81±3.16 3806FCC

RMSE 0.44±0.08 0.57±0.10 4.00±0.41 3.39±0.52 14.1±2.38 6.11±1.43 15.1±3.48 8627 /

MAPE 2.57±0.40 3.59±0.48 13.8±2.06 21.0±5.17 69.6±5.97 27.3±4.66 61.1±7.84 1762 11.8
MAE 0.65±0.13 1.04±0.21 3.41±0.67 5.71±1.96 17.9±1.50 7.80±1.34 20.6±4.35 2035Oboe

RMSE 1.44±0.23 1.84±0.29 4.90±0.92 9.61±1.94 20.9±1.72 8.96±1.37 27.4±4.55 5013 /

MAPE 3.16±0.23 3.97±0.26 17.4±1.91 27.6±3.55 76.1±4.00 27.3±3.57 59.8±5.15 2336
MAE 0.57±0.08 0.77±0.11 2.72±0.31 4.97±0.66 13.9±1.45 5.74±1.02 12.7±2.54 2253HSDPA

RMSE 0.95±0.12 1.16±0.14 4.31±0.48 7.09±0.75 16.5±1.48 6.91±1.08 17.0±2.61 5405
/

MAPE 1.96±0.17 3.02±0.20 18.1±1.97 18.8±4.36 45.5±7.46 30.3±4.93 85.7±3.78 562
MAE 1.25±0.29 2.44±0.57 17.4±4.41 14.7±5.40 25.2±2.16 29.3±7.59 78.4±15.5 1390Online

RMSE 2.94±0.50 4.27±0.72 24.4±4.40 25.8±5.49 31.0±2.66 39.7±8.32 97.6±15.4 2959
/
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Fig. 8. Illustration of AAR’s hybrid measurement. (a) presents the NN prediction accuracy with estimated confidence, (b)-(c) shows the distribution of
confidence scores and (d) presents the optimal threshold searching process.

variables imply that ∆di = |d∗i − di| = 0, thus dui,j =

di,j+
|∆di|×di,j

di
= di,j . Therefore the min solution is straight-

forward. In contrast, if we adopt ∆di = |d∗i−dui | = |di−dui | ≠
0, we will overestimate dui,j which is supposed to be di,j ,
therefore the min solution is not maximized. ■

Bad Case: Assumption 1 holds in most real-world cases.
In rare scenarios when it fails, e.g. due to frame capture
rate increase on the ingest side, Theorem 1 is not guaranteed
because the download time is overestimated and hence bitrates
are conservative. However, the min solution is still near
optimal because the rebuffering ri often imposes a much
heavier penalty and it is always monotonically increasing
with di,j . Therefore, dui,j still drives the ABR towards the
most pessimistic (and thus robust) QoE. In addition, after the
temporary failure cases, we can adjust the T variable in QoE
reward Equ. 10 in accordance with the actual ingest FPS.

Implementation via MPC. With the min problem solved
via Theorem 1, we address the outer maximization using
Model Predictive Control (MPC). As detailed in Algorithm 2,
the MPC controller systematically explores all feasible bitrate
plans over a finite future horizon Nh. For each candidate
target bitrate pair, it simulates the system’s evolution using
our LLLS-tailored model. We first derive the average d-error
from the past 5 segments (line 1), while future bandwidth pck
and predicted segment size si from bitrate Ri can be derived
by our cNF prediction module (line 7) in an autoregressive
manner. sk,j is estimated by the last segment’s chunk size

ratio. For each step in the simulation, it evaluates the QoE
penalty using the worst-case download time duk,j , as dictated
by Theorem 1. The controller then selects the bitrate plan that
yields the highest minimum guaranteed QoE (line 14) and
executes the first bitrate choice of that optimal plan (line 16).

IV. EVALUATION

A. Experimental Setup

Testbed and Configuration. We conduct our experiments
using a testbed comprising an HTTP server and a client
running dash.js (v.4.7.2), each deployed on a separate Ubuntu
server. The streaming configuration is aligned with the mmsys-
grand-challenge [26]: we target a latency of 1.5s with a
stability threshold of δ = 0.3s. Each segment has a duration of
0.5s and contains K = 15 CMAF chunks, corresponding to a
30 FPS video where each chunk has a duration of T = 33ms.
We use a standard DASH reference video [27] encoded at
six distinct bitrates: Ri ∈{200, 600, 1000, 2500, 4000, 6000}
Kbps.

Network Conditions. We emulate dynamic network con-
ditions using the Chrome DevTools network throttling fea-
ture. Our evaluation employs four diverse and challenging
bandwidth trace datasets: the publicly available FCC [28] and
3G/HSDPA [29] datasets, the Oboe [30] dataset collected from
cellular networks, and a proprietary real-world dataset (On-
line) captured from a large-scale e-commerce live streaming
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TABLE IV
BANDWIDTH PREDICTION PERFORMANCE FOR DIFFERENT METHODS ACROSS 4 DATASETS. WE PRESENT MAPE↓, MAE↓ AND RMSE↓. FOR MAE AND
RMSE, WE DIVIDE THE RAW VALUE BY 100 TO ALIGN THE NUMBER PRECISION. THE RAW RESULTS CAN BE FOUND IN ABLATION STUDY IN TABLE VIII.

Dataset Metrics AAR AAR-Base(Avg) EWMA Harmonic TimesNet Crossformer Mamba DeeProphet

MAPE 3.36±0.36 5.18±0.63 4.87±0.45 4.69±0.49 5.00±0.55 9.00±0.87 5.70±0.62 16.5
MAE 0.40±0.04 0.60±0.06 0.44±0.05 0.61±0.07 0.44±0.05 0.83±0.08 0.51±0.06FCC

RMSE 1.47±0.98 2.34±1.21 1.76±1.05 2.53±1.32 2.12±1.11 1.06±0.69 0.85±0.45 /

MAPE 3.28±0.22 5.34±0.34 4.49±0.26 5.25±0.32 6.68±0.41 10.0±0.65 7.40±0.43 16.5
MAE 0.77±0.05 1.48±0.09 0.97±0.07 1.51±0.09 2.15±0.15 3.19±0.20 2.40±0.17Oboe

RMSE 2.16±1.02 3.69±1.38 2.74±1.16 3.81±1.46 5.08±2.01 5.87±2.48 5.25±2.31 /

MAPE 9.11±0.41 15.6±0.58 11.4±0.46 15.2±0.51 17.9±0.69 26.2±0.95 18.9±0.78
MAE 1.50±0.06 2.56±0.07 1.93±0.06 2.58±0.07 2.86±0.09 3.32±0.11 3.02±0.09HSDPA

RMSE 2.61±0.90 3.73±1.05 3.00±0.93 3.78±1.06 4.12±1.21 4.32±1.35 4.23±1.18
/

MAPE 7.32±0.92 15.0±1.57 10.5±1.14 13.0±1.06 10.5±1.12 18.7±1.85 11.5±1.20
MAE 2.58±0.24 5.52±0.35 3.84±0.28 5.56±0.37 4.33±0.30 7.56±0.58 4.82±0.32Online

RMSE 9.30±4.71 14.0±5.38 11.0±4.83 14.8±5.87 13.4±5.91 14.1±6.03 13.7±5.53
/

application. For AAR’s hybrid measurement and prediction
model training, we split all the traces by 7:1.5:1.5 for training,
validation, and testing. All learning models are deployed on a
single NVIDIA GeForce RTX 3090. The statistical properties
of these datasets are summarized in Table II.

Baselines. For all tasks, we include the previous version
AAR-Base [2] with purely heuristic bandwidth measurement
and prediction for comparison. We also compare AAR against
a comprehensive set of state-of-the-art baselines:
• For bandwidth measurement, we include 7 representa-

tive methods: (1) Fleet [8]; (2) DeeProphet [11]; (3) Moof,
the original parsing logic from LoL+ [7]; (4) I-Moof, our
implementation of LoL+ using AAR’s improved moof+mdat
boundary identification (line 3 in Algorithm 1); (5) AAST
[31], it decides which chunks are downloaded at network
speed or at producer rate; (6) Seg, a naive segment-level
measurement; (7) Default, the built-in filtering logic in dash.js.
• For bandwidth prediction, we select 7 representative meth-

ods: (1) Avg, the average of the last Np measurements; (2)
EWMA, exponential weighted moving average; (3) Harmonic,
harmonic mean of the last Np measurements, and transformer-
based time series prediction model (4) TimesNet [12]; (5)
Crossformer [32]; (6) Mamba [33], a structured state space
model; (7) DeeProphet [11].
• For ABR algorithms, we select 6 representative schemes:

(1) LoL+ [7], self organizing maps-based learning model; (2)
L2ALL [34]; (3) STALLION [35], a latency-aware ABR; (4)
RB, a classic rate-based heuristic; (5) Dynamic, the default
ABR in dash.js; (6) Pensieve [20], a seminal reinforcement
learning ABR designed for VOD, which we retrain on our
LLLS simulator using the QoE model from Equ. 10. Note
that the RMPC baseline is presented in ablation study, refer
to Section IV-E for setup.

Algorithm Parameters. We set Np = Nh = 5 for historical
segment statistics and future horizon. The searched optimal
threshold for confidence P = 0.40, loss weights λmea = 0.5
and batch size is 32. The neural network dimensions can be
found in Fig. 6 and Fig. 7. Note that the input parameters
from Algorithm 1 and 2 are not prefixed and they depend
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Fig. 9. Illustration of AAR’s bandwidth prediction. (a) presents the bandwidth
evolution performance and (b) shows the MAPE error ↓ of joint variable
distributions.

on the specific streaming content. While the weights in the
QoE model are aligned with previous work [7], [11]: Rmin =
200, Rmax = 6000, and α1 = 0.5, α2 = Rmax, α3 = 0.02 ×
Rmin if li < 1.6 and 0.1×Rmax if not, α4 = Rmin, α5 = 1.

Evaluation Metrics. We evaluate performance using two
primary categories of metrics: (1) Accuracy: For measurement
and prediction tasks, we report Mean Absolute Percentage
Error (MAPE), Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE). For MAE and RMSE, we convert
the bandwidth back to its original scale for fair comparison.
(2) QoE: We use the objective function defined in Equ. 10,
with weights αk set according to the N-QoE standard [23],
consistent with prior work [7], [11].

B. Bandwidth Measurement Results

Metrics Comparison. We first evaluate the core accu-
racy of AAR’s hybrid measurement module. To isolate its
performance, we use a fixed Rate-Based (RB) ABR for all
measurement schemes. Table III presents the results. Note that
we apply AAR’s improved CMAF identification patch on all
the baselines except for Moof. We directly report DeeProphet’s
performance stated in [11].

AAR consistently and significantly outperforms all base-
lines across all four datasets, achieving 11%-83% reduction
in MAPE. Specifically, compared to the previous state-of-the-
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Fig. 10. QoE and detailed metrics comparison for FCC dataset. We present the normalized QoE ↑ over the worst STALLION baseline, bitrates in Mbps ↑,
rebuffer in stalling ratio % ↓, abnormal latency ratio % ↓, abnormal playback speed ratio % ↓, and bitrate switches in Mbps ↓. For (a)-(c), the upper right,
the better.

art, DeeProphet, AAR still demonstrates a clear advantage
with an 8%-10% lower error. However, DeeProphet requires
extra setup on the server side, and the measurement result ci
is stored in server’s database, which can only be delivered
to the client upon segi+1 request. As a result, it imposes a
bitrate lower than the measured bandwidth from the server
side to prevent such delay, which has altered the whole LLLS
framework and is not practical to deploy. The substantial im-
provement of I-Moof over the original Moof (up to 50% error
reduction) validates the critical importance of our improved
CMAF boundary identification logic. Schemes like AAST and
Seg perform poorly as they fail to account for chunk-level
idle time, while the default dash.js filter is the least effective
due to its aggressive and noise-sensitive filtering strategy.
These results confirm that AAR’s Flag-based hybrid approach
provides fundamentally more accurate and robust bandwidth
estimates.

Illustration. To better understand the hybrid model’s mech-
anism, we present some bandwidth and confidence distribu-
tions in Figure 8. Fig. 8(a) shows the distribution of NN-
based bandwidth estimation, which closely aligns with the
ground truth. The heat map indicates that low confidence
scores mainly come with low bandwidth scenarios, and (b)
further demonstrates the correlation. This is due to longer
transmission time which is less likely to be perturbed by
random noises. Therefore heuristic methods can provide more
robust results with interpretable weighted average. (c) shows
that for lower confidence of NN output, the heuristic method
indeed exhibits better performance, which in turn validates
the effectiveness of our threshold-based model selection. (d)
further presents the searching process of optimal threshold.
The results for 3 different metrics show similar trends and we
choose 0.40 to maximize MAPE performance. To summarize,
AAR’s hybrid measurement model effectively combines the
strengths of both NN-based and heuristic methods, achieving
superior accuracy and robustness.

C. Bandwidth Prediction Results

Metric Comparison. We evaluate the performance of our
cNF-based prediction model, and we fix the measurement
as our accurate AAR for fair comparison. Note that we
only report the next segment bandwidth results to compute
accuracy. As shown in Table IV, AAR’s predictor achieves
the highest accuracy across all metrics and datasets, with up

to 17% MAPE reduction against one of the SOTA model
Crossformer. This superiority stems from our cNF design
that breaks the circular dependency by jointly modeling the
distribution of multiple variables and thus rendering reliable
expectation. We also note that simple heuristics like Average
even surpass the transformer-based models like TimesNet,
because more complex networks do not necessarily lead to
better performance without LLLS tailored designs for irregular
time embedding and circular dependency.

Illustration. For detailed performance, we present a band-
width evolution example in Figure 9(a), where AAR’s pre-
dicted bandwidth closely follows the ground truth, while naive
approach Average exhibits significant delay from future dis-
tribution. Figure 9(b) qualitatively shows the joint distribution
accuracy of our cNF. We can find that all 4 interdependent
variables exhibit low MAPE error, especially for download
timestamp forecasting, demonstrating the effectiveness of our
irregular time embedding. The segment size error is instead
higher, which can be further minimized by incorporating
the video content characteristics and video codec setting. In
summary, our cNF-based prediction model outperforms all the
baselines with both better quantitative and qualitative results.

D. ABR QoE Results

To assess the end-to-end QoE results, we integrate AAR’s
full pipeline and compare against the baseline ABRs, all of
which use AAR’s high-fidelity measurement and prediction
module for a fair comparison. The aggregated statistics for
QoE scores and individual components are shown in Fig. 10-
13. Note that we normalize the QoE value by the worst
baseline. Across all network conditions, AAR achieves the
highest overall QoE ranging from 1.5 to 2.0, with improve-
ments up to 102%. This mainly stems from high bitrates
and low rebuffering simultaneously, as seen in subplots (a)
of each figure. In contrast, the state-of-the-art LLLS ABR,
STALLION, often suffers from higher rebuffering, particularly
in the highly variable HSDPA traces. Dynamic and Pensieve,
while stable, are overly conservative, sacrificing significant
bitrate for safety, e.g., for Oboe dataset. AAR’s robust max-
min objective allows it to aggressively pursue high bitrates
when safe and gracefully adapt when uncertainty is high,
leading to superior and more reliable QoE.

Compared with AAR-Base, AAR mainly improves in terms
of rebuffering and bitrate switches, thanks to our accurate
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Fig. 11. QoE and detailed metrics comparison for Oboe dataset. We present the normalized QoE ↑ over the worst Pensieve baseline, bitrates in Mbps ↑,
rebuffer in stalling ratio % ↓, abnormal latency ratio % ↓, abnormal playback speed ratio % ↓, and bitrate switches in Mbps ↓. For (a)-(c), the upper right,
the better.
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Fig. 12. QoE and detailed metrics comparison for HSDPA dataset. We present the normalized QoE ↑ over the worst STALLION baseline, bitrates in Mbps
↑, rebuffer in stalling ratio % ↓, abnormal latency ratio % ↓, abnormal playback speed ratio % ↓, and bitrate switches in Mbps ↓. For (a)-(c), the upper right,
the better.
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Fig. 13. QoE and detailed metrics comparison for Online dataset. We present the normalized QoE ↑ over the worst Pensieve baseline, bitrates in Mbps ↑,
rebuffer in stalling ratio % ↓, abnormal latency ratio % ↓, abnormal playback speed ratio % ↓, and bitrate switches in Mbps ↓. For (a)-(c), the upper right,
the better.

bandwidth prediction and hence better state evolution. The
overall QoE gain is yet marginal, because the absolute value
is already near optimal such as 0.5% stalling for FCC dataset.
Moreover, the reward for switches is relatively low as defined
by previous work [26], compared with major penalty mini-
mization from rebuffering. For other baselines, the metric gain
over those in [2] mainly stems from improvement in switches
and abnormal latency ratio, e.g. from 2.5% to 1.0% in FCC
dataset. The reason is that we leverage a cNF-based bandwidth
prediction that requires bitrates in advance. However, these
methods do not apply bitrate combination in a state evolution
model like AAR. Therefore we directly use the last decided
bitrate as input, which is suboptimal and less effective. In
general, AAR gains the most QoE improvement from our
coordinated systems and outperforms existing ABR baselines
with higher QoE, bitrates and lower rebuffing.

E. Ablation Study

Impact of AAR’s Modules on ABR QoE. We first in-
vestigate the symbiotic relationship between our modules and
various ABR algorithms. We replace our hybrid measurement
model with the previous SOTA Fleet [8] and present the
corresponding normalized QoE. The results are in Table V. We
can find that without our accurate measurement, all the ABRs
perform worse with different magnitudes, while Pensieve
(from 3.10 to 1.00 in FCC) and RB (from 3.32 to 1.65 in FCC)
suffer significantly higher degradation. This also demonstrates
that solely relying on bandwidth for bitrate selection can be
easily perturbed.

We further replace our cNF-based prediction with the SOTA
time series model TimesNet [12] and present the results in
Table VI. The ABRs still degrade without accurate bandwidth.
However, since the fundamental measurement is still accurate,
the prediction errors can be mitigated with lower QoE degra-
dation.
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TABLE V
ABR’S QOE ↑ WITH DIFFERENT BANDWIDTH MEASUREMENTS. WE NORMALIZE WITH THE WORST QOE FROM BOTH MEASUREMENTS.

Dataset Mea
ABR AAR Pensieve LoL+ L2ALL STALLION Dynamic RB

FCC AAR 5.33±2.05 3.10±1.63 3.69±1.57 3.35±1.54 2.73±1.55 3.85±1.55 3.32±1.55
Fleet 5.26±2.03 1.00±2.02 3.43±1.67 1.42±2.23 2.53±1.77 4.01±1.48 1.65±2.11

Oboe AAR 1.46±0.27 1.02±0.19 1.21±0.16 1.18±0.25 1.12±0.24 1.20±0.22 1.18±0.23
Fleet 1.28±0.30 1.00±0.20 1.21±0.22 1.20±0.29 1.11±0.24 1.15±0.26 1.18±0.23

HSDPA AAR 1.90±0.41 1.54±0.37 1.60±0.34 1.58±0.35 1.20±0.51 1.63±0.28 1.60±0.42
Fleet 1.85±0.38 1.25±0.49 1.45±0.39 1.36±0.66 1.00±0.59 1.50±0.29 1.34±0.65

Online AAR 2.25±0.40 1.11±0.39 1.92±0.78 1.93±0.50 1.43±1.17 2.11±0.49 1.92±0.61
Fleet 2.24±0.42 1.00±0.69 1.99±0.73 1.51±0.99 1.75±0.62 2.06±0.43 1.76±0.79

TABLE VI
ABR’S QOE ↑ WITH DIFFERENT BANDWIDTH PREDICTIONS. WE NORMALIZE WITH THE WORST QOE FROM BOTH PREDICTIONS.

Dataset Mea
ABR AAR Pensieve LoL+ L2ALL STALLION Dynamic RB

FCC AAR 3.17±1.22 1.84±0.97 2.19±0.93 1.99±0.92 1.62±0.92 2.29±0.92 1.97±0.92
TimesNet 3.15±1.20 1.00±1.19 2.07±1.00 1.21±1.34 1.53±1.06 2.34±0.90 1.30±1.24

Oboe AAR 1.43±0.26 1.02±0.19 1.19±0.16 1.16±0.25 1.10±0.24 1.18±0.22 1.16±0.23
TimesNet 1.29±0.31 1.00±0.18 1.21±0.20 1.15±0.31 1.11±0.26 1.13±0.24 1.14±0.25

HSDPA AAR 1.75±0.38 1.42±0.34 1.47±0.31 1.45±0.32 1.10±0.47 1.50±0.26 1.47±0.39
TimesNet 1.73±0.33 1.26±0.43 1.36±0.37 1.30±0.58 1.00±0.56 1.40±0.25 1.30±0.57

Online AAR 2.11±0.38 1.04±0.37 1.80±0.73 1.81±0.47 1.34±1.10 1.98±0.46 1.80±0.57
TimesNet 2.08±0.42 1.00±0.62 1.84±0.66 1.57±0.94 1.56±0.61 1.97±0.43 1.69±0.76

TABLE VII
ABLATION STUDY OF AAR’S HYBRID BANDWIDTH MEASUREMENT. WE PRESENT MAPE ↓, MAE ↓ AND RMSE ↓.

Dataset FCC Oboe HSDPA Online

Metric MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

AAR (Combined) 2.31 27.4 44.4 2.57 64.5 144.2 3.16 56.7 95.1 1.96 124.8 294.3
w/o NN 2.55 34.1 57.4 3.59 104.6 183.7 3.97 77.3 115.8 3.02 243.5 426.8

w/o Heuristic 4.01 40.1 62.6 3.13 71.1 162.2 4.11 64.0 103.1 2.25 135.8 348.4
w/o FlagAgg 2.62 37.4 68.7 3.38 95.7 171.0 3.90 74.1 124.5 3.17 264.7 451.8

Deconstructing AAR’s measurement. Next we evaluate
the effectiveness of each module of AAR. For bandwidth
measurement, we remove some designs of our hybrid model
and present the results in Table VII. We can find that without
either the heuristic (4.01% in MAPE) or the NN (2.55% in
MAPE) component results in a clear performance degradation,
because the NN output exhibits higher accuracy in most cases,
as shown in Fig. 8 (a), while the heuristic can guarantee more
robust results in low bandwidth scenarios. Moreover, removing
the Flag-based feature aggregation from the NN also causes a
drop in accuracy, proving that this lightweight server signal is
essential for the model to distinguish idle time from network
burst.

Deconstructing AAR’s prediction. Similarly, we ablate our

cNF predictor and present the results in Table VIII. We can
find that removing our novel interval time embedding or the
bitrate-as-query attention mechanism (replaced with regular
attention) degrades accuracy, confirming their importance in
handling irregular time series and modeling ABR’s impact.
More notably, replacing the entire flow mechanism with a sim-
ple MLP leads to the largest performance drop, highlighting
the critical role of probabilistic modeling in capturing LLLS
uncertainty and breaking the circular dependency.

Parameter Sensitivity. We study the impact of 2 fixed
parameters in Table IX. For bandwidth measurement, we lever-
age a confidence threshold P to determine optimal method.
Since P is selected from validation dataset search, we can
also apply RMSE and MAE threshold besides the default
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TABLE VIII
ABLATION STUDY OF AAR’S CNF-BASED BANDWIDTH PREDICTION. WE PRESENT MAPE ↓, MAE ↓ AND RMSE ↓.

Dataset FCC Oboe HSDPA Online

Metric MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

AAR 3.36 39.8 146.9 3.28 77.2 216.0 9.11 150.3 260.8 7.32 258.3 929.5
w/o TimeEmbed 3.87 44.5 171.0 3.86 87.5 247.2 10.22 177.6 312.9 8.65 286.3 1095.3

w/o Attention 4.27 47.8 184.6 4.07 97.6 258.4 11.71 192.1 314.6 8.76 328.8 1174.3
w/o Flow 4.83 56.3 219.7 4.77 116.2 310.7 13.45 227.3 390.4 10.49 369.4 1291.5

TABLE IX
ABLATION STUDY OF PARAMETERS. WE PRESENT MAPE ↓, MAE ↓ RMSE ↓ AND N-QOE ↑.

Dataset FCC Oboe HSDPA Online

Metric MAPE MAE RMSE N-QoE MAPE MAE RMSE N-QoE MAPE MAE RMSE N-QoE MAPE MAE RMSE N-QoE

Threshold
RMSE P=0.37 2.40 28.3 45.4 1.95 2.58 64.7 143.7 1.45 3.17 56.9 95.0 1.61 1.98 125.0 295.1 2.07
MAPE P=0.40 2.31 27.4 44.4 1.97 2.57 64.5 144.2 1.45 3.16 56.7 95.1 1.61 1.96 124.8 294.3 2.09
MAE P=0.47 2.32 27.5 44.4 1.98 2.56 64.3 143.2 1.45 3.18 57.0 95.7 1.59 1.94 124.6 297.2 2.08

Horizon
Nh=4

/
1.98

/
1.45

/
1.62

/
2.08

Nh=5 1.97 1.45 1.61 2.09
Nh=8 1.93 1.43 1.55 2.05

MAPE P . The results show that MAE and MAPE threshold
generally perform better in terms of their own metric, but the
absolute gap among the 3 thresholds is small. The overall QoE
instead favors MAPE more, which is our default selection.
Alternatively, we can also adjust the ABR horizon lengths.
The results are generally worse with higher Nh, because the
bandwidth prediction is less accurate if the output is longer,
which is an inherent issue in time series forecasting domain.
Low Nh may induce better bandwidth results but it fails to
consider longer consequence like potential empty buffer. We
choose Nh = 5 for tradeoff between ABR robustness and
bandwidth accuracy.

Deconstructing AAR’s ABR. Finally, we validate the
design of our robust ABR controller and max-min QoE design.
We first remove our max-min QoE by replacing the min
solution dui,j with regular di,j , and we adopt VOD RMPC’s
bandwidth prediction error module pc ← pc

1+|∆pc| , denoted
as AAR-1 (RMPC). Then we change our dui,j estimation in
Theorem 2 by using ∆di = |d∗i − dui | to estimate the upper
bound dui,j , denoted as AAR-2. We present the corresponding
QoE and buffer evolution prediction error (in MAPE) in Table
X. AAR outperforms both variants, improving QoE by 2%-
19% and reducing buffer prediction error by 0.55%-2.6%.
AAR-1 ranks the bottom because our max-min objective is the
essential guarantee for robustness against all possible LLLS
uncertainty. AAR-2 still exhibits high B-Error because of the
inappropriate estimation of dui,j , as validated by Theorem 2.

To better perceive the difference, we present intuitive ex-
amples of buffer evolution and prediction errors in Fig. 14.
We can find in (a) that AAR’s predicted buffer closely tracks
the ground truth, even when the segment size varies around
No. 40 in (d), thanks to our principled max-min objective
and the adjusted download time estimation. In contrast, AAR-
1 performs worse because RMPC only tackles bandwidth
uncertainty while neglecting size variation, therefore the size
fluctuation around No. 40 in (e) leads to inferior buffer pre-

TABLE X
QOE ↑ (NORMALIZED OVER THE WORST BASELINE AS IN FIG. 10-13) AND

B-ERROR ↓ ABLATION STUDY OF AAR’S ABR.

Dataset Metric
ABR AAR AAR-1 (RMPC) AAR-2

FCC QoE 1.97±0.75 1.71±0.70 1.94±0.77
B-Error 6.61%±1.55% 7.24%±1.98% 7.16%±1.82%

Oboe QoE 1.45±0.26 1.28±0.35 1.41±0.24
B-Error 4.33%±0.31% 6.39%±0.68% 6.33%±0.53%

3G/HSDPA QoE 1.61±0.34 1.35±0.31 1.60±0.34
B-Error 5.33%±0.44% 7.61%±0.82% 7.56%±0.81%

Online QoE 2.09±0.36 2.01±0.30 2.05±0.30
B-Error 4.76%±1.03% 7.36%±1.55% 6.81%±1.23%

TABLE XI
TIME AND MEMORY OVERHEAD OF AAR.

Category Training Inference

Time GPU Memory CPU Memory Time GPU Memory CPU Memory

Measurement ∼5 min 437MB 1019.18MB 1ms 373MB 777.51MB
Prediction ∼10min 849MB 2107.74MB 3ms 367MB 1962.84MB

diction in (b). AAR-2 adopts ∆di = |d∗i − dui | > 0 even with
low size deviation around segment 50 in (f), which renders
varying download time and buffer estimation. Therefore the
latency also fluctuates in (c) due to playback speed adjustment
to guarantee the buffer threshold (1.5s).

F. Overhead Analysis

Flag Mechanism and ABR logic. The server-side Flag
parameter is a lightweight addition to the HTTP header and
does not introduce any delay. At the client side, our robust
ABR avoids expensive online optimization by leveraging the
closed-form solution from Theorem 1. Therefore, these two
components do not incur any additional overhead.

Hybrid Measurement and cNF Prediction. For the learn-
ing model in measurement and prediction, we present the
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(c) AAR-2-Buffer Evolution
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(d) AAR-Prediction Error
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(e) AAR-1 (RMPC) -Prediction Error
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(f) AAR-2-Prediction Error
Fig. 14. Buffer evolution (a)-(c) and corresponding relative prediction error (d)-(f).

training and inference overhead in terms of time and memory.
As shown in Table XI, the computational overhead for our
learning-based modules is minimal during inference, requiring
only 1-3ms per decision. This minimal overhead, combined
with significant performance gains, demonstrates AAR’s fea-
sibility for real-world deployment.

V. RELATED WORK

A. Bandwidth Measurement in LLLS

Application-Layer Heuristics. The most common methods
operate entirely at the application layer, using HTTP chunk
arrival times to infer network capacity. Naive approaches, such
as measuring the download time of a whole segment or the
simple filtering logic in dash.js (Default), are easily misled by
server-side idle time. More sophisticated heuristics have been
proposed to mitigate this. The method in LoL+ [7] (Moof)
attempts to isolate the download time of individual CMAF
chunks by parsing for moof and mdat boxes. Fleet [8] refines
this by aggressively filtering small HTTP chunks to reduce
noise. However, as we demonstrate in our evaluation, these
methods remain vulnerable. They make incorrect assumptions
about chunk boundaries (LoL+) and they are highly sensitive
to network noise (Fleet).

Cross-Layer Approaches. To gain more precise infor-
mation, some methods leverage data from lower network
layers. DeeProphet [11] leverages the TCP cwnd from server’s
transport layer to decide which of the packets are sent consec-
utively, reducing TCP blocking time. However, this induces
additional setup overhead and the measured results can’t be
delivered to the clients before the segment request and ABR
decision, which greatly hinders real-world deployment. CLBE
[36] also proposes to use the captured packet information on

the client side to compute packet-level bandwidth. However,
it requires queries from third-party module via WebSocket,
which can induce additional time overhead, and a single
packet’s bandwidth still comprises deviation from noises like
Fleet.

B. Bandwidth Prediction in LLLS

With the rise of deep learning, researchers have applied
sophisticated, general-purpose time-series models to band-
width prediction. These include state-of-the-art Transformer-
based architectures like TimesNet [12], Crossformer [32],
Mamba [33] and TimeMixer [37]. While powerful in standard
forecasting benchmarks, these models are ill-suited for the
LLLS ABR problem. They are not designed to handle the core
challenge of circular dependency with irregular time sampling.

Our work is most related to models that learn to predict
within the streaming context. DeeProphet [11] uses a learning-
based model but still frames the problem as forecasting a
future value. VOD-based Lumos [10] and delay-based pre-
dictor CS2P [16] and T3P [17] all assume knowledge of the
exact next segment sizes without inter-chunk idle time during
transformation, which fails to meet the requirements of various
LLLS features.

C. Adaptive Bitrate Algorithms

VOD ABR Algorithms. The history of ABR starts with
heuristic methods like rate-based and RMPC [19], followed by
deep learning-based schemes like Pensieve [20] and Comyco
[21]. Karma [38] improves QoE by learning the causality
among past observations, returns and actions. Jade [39] instead
proposes to optimize QoE by aligning with user’s scores
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via RLHF [40]. SODA [41] proposes to optimize a time-
based QoE with theoretical guarantees, while MAFL [42]
instead evaluates the robustness of federated learning [43]
based ABRs.

LLLS ABR Algorithms. More recent work has focused
specifically on LLLS. These algorithms extend the VOD
QoE objective to include penalties for latency and playback
speed adjustments like LoL+ [7] in Section II-C. L2ALL
[34] instead solves an online convex optimization problem to
derive optimal bitrate. STALLION [35] improves bandwidth
measurement with the mean and deviation for better decisions.
Tightrope [24] proposes the BDQ framework that leverages
reinforcement learning to control both bitrates and playback
speed. However, it’s only implemented in offline simulator
and lacks compatibility with real world streaming. SLVS [44]
also proposes to generate a parameter table in a simulator
according to bandwidth distribution for hybrid ABR to fine-
tune parameters.

VI. CONCLUSION

In this work, we present 3 challenges in LLLS in terms
of inaccurate bandwidth measurement, irregular prediction
with circular dependency and various LLLS uncertainties for
ABR control. Based on the insights, we propose the AAR
framework comprising 3 modules: (1) We propose to attach
a Flag parameter to identify the burst CMAF chunks to
derive valid samples. Then we propose a hybrid approach
to combine our two proposed heuristic and learning-based
models to yield high-fidelity bandwidth measurement. (2) We
propose a novel conditional normalizing flow-based model to
learn the joint distribution of interdependent variables based
on novel attention features to predict the expected bandwidth.
(3) We propose a novel max-min objective to guarantee the
lower bound of QoE backed up by two theorems. We further
propose a novel LLLS model and apply MPC to search for
the optimal bitrate. Real-world experiments demonstrate that
AAR outperforms 7 measurement, 7 prediction and 6 ABR
baselines with significant improvement.
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