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Abstract— Deep learning (DL) methods have been widely
applied to anomaly-based network intrusion detection system
(NIDS) to detect malicious traffic. To expand the usage scenarios
of DL-based methods, federated learning (FL) allows multiple
users to train a global model on the basis of respecting individual
data privacy. However, it has not yet been systematically eval-
uated how robust FL-based NIDSs are against existing privacy
attacks under existing defenses. To address this issue, we propose
two privacy evaluation metrics designed for FL-based NIDSs,
including (1) privacy score that evaluates the similarity between
the original and recovered traffic features using reconstruction
attacks, and (2) evasion rate against NIDSs using adversarial
attack with the recovered traffic. We conduct experiments to
illustrate that existing defenses provide little protection and
the corresponding adversarial traffic can even evade the SOTA
NIDS Kitsune. To defend against such attacks and build a more
robust FL-based NIDS, we further propose FedDef, a novel
optimization-based input perturbation defense strategy with the-
oretical guarantee. It achieves both high utility by minimizing the
gradient distance and strong privacy protection by maximizing
the input distance. We experimentally evaluate four existing
defenses on four datasets and show that our defense outperforms
all the baselines in terms of privacy protection with up to 7 times
higher privacy score, while maintaining model accuracy loss
within 3% under optimal parameter combination.

Index Terms— Federated learning, intrusion detection, gradi-
ent privacy leakage, defense strategy.

I. INTRODUCTION

DEEP learning-based network intrusion detection system
(NIDS) has been widely used to detect malicious traffic
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and intrusion attacks, they are expected to raise alarms when-
ever the incoming traffic carries malicious properties (e.g.,
scan user’s ports) or induces attacks (e.g., DDoS). Recently,
researchers have been trying to adopt federated learning (FL),
where multiple users collaboratively exchange information and
train a global model with publicly shared gradients, to derive
more accurate detection of cyberattacks without privacy leak-
age. For example, [1] proposes the collaboration-enabled
intelligent Internet architecture for malicious traffic detection.
Reference [2] proposes a decentralized federated architec-
ture that collaborates with eleven Internet Exchange Points
(IXPs) operating in three different regions. It allows participant
mitigation platforms to exchange information about ongoing
amplification DDoS attacks. Experimental results illustrate
that such collaboration can detect and mitigate up to 90%
more DDoS attacks locally, which proves great success for
faster and more effective detection and neutralization of
attack traffic among collaborative networks. Reference [3]
also proposes an autonomous FL-based anomaly detection
system to locate compromised Internet of Things (IoT) devices
with high detection rate (95.6%) and fast inference (257ms),
while [4] further proposes a FL-based NIDS for industrial
cyber–physical systems in real world. These new researches
indicate a promising trend that combination with FL can
improve the overall detection performance of NIDS and is
receiving extensive attention.

However, sharing model updates or gradients also makes
FL vulnerable to inference attack in computer vision (CV)
domain, e.g., property inference attack that infers sensitive
properties of training data [5] and model inversion attack that
reconstructs image training data [6], [7], [8], [9]. Accordingly,
there have also been some defense strategies such as differ-
ential privacy for deep learning [10] and Soteria [11] that
perturbs the data representation features for images. However,
unlike CV domain where slight noises added to the images
can induce totally different visual perception and thus have
higher tolerance for privacy, the reconstruction of traffic data
may be more intimidating, because adversaries can evade the
target model via (1) black-box attack that trains Generative
Adversarial Network (GAN) model with the reconstructed
benign data to generate new malicious traffic from random
noises, or (2) white-box attack that directly perturbs the recon-
structed malicious data. Unfortunately, few researches have
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systematically investigated to what extent current defenses
combined with NIDS can protect user privacy, and whether
there exists defense strategy that achieves both high utility
and strong privacy guarantee to build a more robust FL-based
NIDS.

To derive a more accurate evaluation of privacy for
FL-based NIDSs, we propose two privacy metrics specifically
designed for NIDS domain, i.e., privacy score and evasion
rate. For the first one, we leverage reconstruction attacks,
i.e., inversion and extraction attack, to recover the original
training data from model gradients. Then we can calculate
the similarity between raw and reconstructed data to evaluate
privacy leakage, where we use different distance metrics for
continuous (e.g., traffic duration) and discrete features (e.g.,
protocol type). With enough reconstructed traffic, we can
evaluate evasion rate by training GAN model or applying per-
turbation to generate adversarial traffic to attack other NIDSs,
which presents the practical threats in real world. With the
above privacy metrics, we evaluate existing defenses combined
with FL-based NIDS and demonstrate that all baselines fail to
provide sufficient privacy protection and the adversarial traffic
can even evade the SOTA NIDS Kitsune [12], which urges for
new effective defense strategy.

To bridge this gap and build a more robust FL-based NIDS
defending against gradient leakage, we further propose a novel
input perturbation-based defense approach with theoretical
guarantee for model convergence and data privacy named
FedDef, which optimizes an objective function to transform
the original input such that: 1) the distance between the new
input and the raw input is as far as possible to prevent privacy
leakage and 2) the corresponding gradients are as similar as
possible to maintain model performance. Experimental results
on four datasets illustrate that our defense can mitigate both
reconstruction attacks and achieve at most 7 times higher
privacy score compared to the second best defense, and the
following adversarial attack fails to evade other NIDSs, which
significantly outperforms other baselines. Regarding model
performance, the FL model can still converge under our
defense with iid and non-iid data distribution, and that model
accuracy can be guaranteed within at most 3% loss with the
optimal parameter combination.

Contributions. We summarize our contributions as follows:
• We propose two privacy evaluation metrics designed for

FL-based NIDS, including (1) privacy score that evaluates the
similarity between raw traffic feature and the recovered feature
using reconstruction attacks, and (2) evasion rate against
NIDSs using black-box and white-box adversarial attacks.
• To the best of our knowledge, we are the first to pro-

pose FedDef, an optimization-based input perturbation defense
scheme for FL-based NIDS to prevent privacy leakage while
maintaining model performance. To enhance our method,
we also provide theoretical analysis for model convergence
under non-iid data distribution and privacy guarantee for our
defense.
• Experimental results on four datasets illustrate that our

proposed FedDef outperforms existing defense approaches in
terms of privacy protection. With FedDef, the privacy score is
1.5-7 times higher than the second best baseline during early

training stage, and evasion rate on Kitsune model is always 0,
while other baselines induce successful evasion more or less.
In the meantime, FedDef still maintains high model utility
with up to 3% accuracy loss compared to no-defense baseline
under optimal parameter setting.

The rest of the paper is organized as follows: In Section II,
we introduce some background and motivation. Section III
provides our threat model and the corresponding privacy
metrics with evaluation example. In Section IV, we intro-
duce our defense design and detailed implementation with a
representative FL framework. We provide theoretical analysis
on convergence and privacy guarantee for our defense in
Section V. In Section VI, we evaluate our defense with four
baselines on four datasets with respect to privacy preserving
and model performance. We discuss some future work in
Section VII and conclude this study in Section VIII.

II. BACKGROUND AND MOTIVATION

In this section, we introduce some background of FL-based
NIDS, two SOTA reconstruction attacks and current defenses
accordingly, and then we present the motivation of our study.

A. FL-Based NIDSs

FL-based NIDS is a new promising topic that combines
FL [13] like FedAvg [14] with intrusion detection. Local users
first extract features from their private traffic data and then
update the global model with the derived gradients, which
are aggregated at the trusted server for later distribution.
For example, [15] proposes a FL-based anomaly detection
approach to proactively recognize intrusion in IoT networks
using decentralized on-device data. Some work also consider
hierarchical and interpretable FL to further build a practical
NIDS [16], [17]. However, few have investigated the robust-
ness of FL-based NIDSs against privacy attacks, which hinders
the deployment of secure NIDSs.

B. Reconstruction Attack

FL also faces privacy leakage issues, such as data recon-
struction [20], membership inference [25], and attribute infer-
ence [26]. We focus on the severest reconstruction attack that
aims to recover training samples. It can be categorized into two
types, i.e., optimization-based inversion attack and accurate
extraction attack.

1) Inversion Attack: DLG (i.e., Deep Leakage from Gradi-
ents) [20] solves an optimization problem to obtain the raw
features and labels, which can be formulated as:

argminx∗,y∗ ∥∇θ(x∗, y∗)−∇θ(x, y)∥2 (1)

where ∇θ(x, y) =
∂ℓ(θ,x,y)

∂θ
, ℓ is the local overall loss function

on differentiable deep learning model (e.g., DNN), θ is the
overall model parameter, and (x, y) is the original feature and
label. Fig. 1 illustrates the process of inversion attack in FL,
where malicious server (or user in decentralized mode) tries to
match the publicly shared gradient with the dummy gradient.
Specifically, they first randomly initialize a dummy input x∗

and y∗. Then, they iteratively optimize the dummy gradients
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TABLE I
A SUMMARY OF EXISTING DEFENSE APPROACHES

Fig. 1. Overview of inversion reconstruction attack.

∇θ(x∗, y∗) close as to original by Euclidean distance, which
also makes the dummy data close to the real training data.

Follow-up works improve on these results by using different
distance metrics such as cosine similarity [7]:

argminx∗,y∗ 1−
⟨∇θ(x∗, y∗),∇θ(x, y)⟩

∥∇θ(x∗, y∗)∥∥∇θ(x, y)∥
(2)

where ⟨·, ·⟩ means inner product. Reference [27] also proposes
an improved DLG (i.e., iDLG) by analytically and accurately
extracting ground-truth label from the last fully-connected
(FC) layer, and thus it performs better as objective function (1)
only has to optimize x∗.

2) Extraction Attack: To further improve the reconstruction
accuracy, researches [7], [28] propose an accurate extraction
attack which can almost perfectly reconstruct a single training
sample without any costs. This kind of attack assumes the
model contains at least one layer, which consists of a weight
and a bias. Specifically, we assume the first layer contains
both weight and bias ([7] gives proof for more generalized
scenario), then the direct output of the first layer y is computed
as W T x + b, where x is the raw input data and (W, b)

is the corresponding weight and bias pair with compatible
dimensionality. We further let i be the row of the first layer
such that ∂ℓ

∂bi
̸= 0, then by chain rule we can obtain x as

xT
= ( ∂ℓ

∂bi
)−1 ∂ℓ

∂W T
i

. In this way, we can extract the exact data

as long as there exists ∂ℓ
∂bi
̸= 0. In Section III, we present a

specific solution of x∗ using PyTorch and give proof for its
failure when batch size of input data x is more than 1.

C. Defenses

There exist several defenses to mitigate such reconstruction
attacks in FL and can be categorized into three types: secure
multi-party computation (MPC), gradient perturbation, and
input perturbation. Existing representative defense approaches
are summarized in TABLE I in terms of 6 metrics, where set-
ting describes iid or non-iid training mode, utility evaluates the
model performance, scalability denotes whether such defense
can be applied in different domains, and feasibility denotes
whether it requires extra setup or data to perform such defense.

1) Secure Multi-Party Computation: MPC [18], [29] allows
a group of parties to synchronously compute a function and
obtain accurate representations of the final value while protect-
ing their private data from privacy leakage. For example, [30]
proposes to let users encrypt their local updates such that the
central server can only recover the aggregation of the updates.
However, MPC requires special setup and can be costly to
implement, and [5] shows that adversaries can still launch
inference attacks against MPC for certain scenarios.

2) Gradients Perturbation: These defenses modify the gra-
dients before updating them to the server. For example, [20]
proposes gradient pruning (GP) that sets certain percent of the
derived gradients of small absolute magnitudes to zero, which
serves as a gradient mask to hide data information. Differential
privacy (DP) [19] provides theoretical privacy guarantee and
bounds the change in output distribution caused by a small
input noise like Gaussian noise [10], [16]. Reference [21] also
proposes to add and eliminate random noises to the global
model from the server to prevent information leakage from
malicious clients, yet it works only when the server is trusted.

3) Input Perturbation: These defenses tend to perturb or
mix the original data from the source. For example, [22]
proposes Instahide to encode the training data with user’s
private dataset instead of blind noises. Reference [11] proposes
Soteria to perturb the image feature representation before the
defended layer to confuse the reconstruction attack. In the
meantime, [23] proposes to search for optimal image trans-
formation combination such as image rotation and shift to
preserve privacy. However, there is no one-size-fits-all traffic
transformation pattern and may not apply to NIDS domain.
Reference [24] proposes to obfuscate the gradients of sensitive
data with concealing data to preserve privacy, yet it limits
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the percentage of sensitive data within a batch and does not
consider label protection.

D. Motivation: Why Privacy Protection for FL-NIDS

In FL, if the training data are images or contexts that carry
high-level sensitive information, the adversary can directly
reconstruct the data and manipulate such privacy. While for
FL-NIDS, the training data are tabular features with low-level
information, which can be less straightforward to understand.
However, traffic data reconstruction can also pose great threats
because those features contain unique patterns tailored to the
clients, which can be manipulated for adversarial attacks.

1) Privacy in Traffic: To reveal the necessity for privacy
protection, we first present some important features of traffic
data in intrusion detection scenario.
• Static info includes source/destination IP and port, net-

work protocol, service, and specific flags.
• Timestamp represents the arrival time of a packet. Aggre-

gation of enough packets can carry information about traffic
behavior pattern. For example, TANTRA [31] utilizes DNN
to learn benign traffic’s timestamp differences and apply them
on malicious data for adversarial attacks.
• Packet size represents the content length of a packet.

Traffic flows usually follow specific packet size distribution
under certain network protocol. For instance, [32] leverages
this feature to generate blind adversarial perturbations to evade
DNN-based traffic classifiers.
• Flow throughput represents the packet sending or

receiving rate during a traffic flow. Adversary can construct
malicious traffic with moderate flow rate that mimics the target
traffic tailored to the target model like DDoS attack in [33].
• Others include the combination of basic features like

max/min packet size during a TCP flow between specific IPs.
These features are usually perturbed to help maximize the
probability of a successful evasion.

2) Why Privacy Protection: In FL-NIDS, as introduced in
Section II-B, the adversary can recover raw traffic data via
reconstruction attacks. Once he/she obtains enough samples
with the features mentioned above, instead of targeting the
data themselves like images, the adversary can make use of
the data to perform the following actions:
• Learning benign traffic’s behavior to generate malicious

traffic with black-box attacks, e.g., training GAN with benign
data and generate with random noises, or just learning the
timestamp feature for more subtle attacks as TANTRA [31].
• Directly perturbing the recovered malicious data with

white-box attacks targeting specific model, e.g., PGD [34],
DeepFool [35], and AutoPGD [36].

Note that we will conduct extensive experiments to validate
the efficiency of such black-box and white-box attacks in
Section VI-C, as a straightforward demonstration for potential
threats of reconstruction attacks even with existing defenses,
and therefore the necessity for stronger privacy protection
for FL-NIDS. As a result, in this paper we are motivated to
propose a new effective defense strategy FedDef to enhance
the data security for FL in Section IV.

III. THREAT MODEL AND PRIVACY METRIC

In this section, we present our adversary and make several
assumptions, then we introduce two privacy metrics with an
evaluation example to enhance our motivation.

A. Adversary

We consider an honest-but-curious server that follows the
exact FL protocol and is allowed to observe the updates from
different users. The goal of the attacker is to reconstruct
each user’s private data and launch adversarial attack against
NIDSs. We make several assumptions of the adversary’s power
as follows: (1) The adversary is aware of the model architec-
ture and loss function. (2) The adversary knows about the
property of the training data, including max/min values, and
feature types (i.e., discrete or continuous). (3) The adversary is
aware of each user’s local training batch size. In this way, the
adversary can perform suitable attacks depending on different
scenarios and thus evaluate defenses’ lower bound.

B. Privacy Score via Reconstruction Attack

1) Inversion Attack in NIDS Scenario: We leverage
optimization-based reconstruction attack using L2 and cosine
distance metrics as introduced in Section II-B. However, there
exist two challenges when it comes to traffic features:

Firstly, traffic features are usually normalized during pre-
processing procedure, therefore, the reconstructed data x∗

should satisfy x∗ ∈ [0, 1]dim , where dim is the dimension
of data features. Secondly, there are discrete and continuous
traffic features in x∗, which require different techniques.

To address the first challenge, we can project the final
optimized x∗ into legal feature space such that x∗ =
clamp(x∗, min = 0, max = 1). Note that we don’t leverage
variable change since it induces additional computation and
achieves similar performance. To address the second chal-
lenge, we first project the normalized x∗ into original feature
space, and then we force the discrete features to be integer
and normalize x∗ again for later privacy evaluation.

Note that when the batch size of the training data is
more than 1, inversion attack may not converge because the
reconstructed data can have different permutations according
to different initialization. Therefore, we reconstruct a single
sample at a time while keeping the rest the same. We incorpo-
rate label y∗ in the optimization process and output the index
of the maximum value of y∗ as the reconstructed label.

2) Extraction Attack in NIDS Scenario: In Section II-B,
we have illustrated that extraction attack is effective for a
single training sample whenever there is a layer with both
weight and bias. According to the neural network in PyTorch,
we have the following theorem:

Theorem 1: If the first layer has a bias, then xT
=

( ∂ℓ
∂W )T ( ∂ℓ

∂b )T ( ∂ℓ
∂b ( ∂ℓ

∂b )T )−1 when and only when batch size=1.
Proof of Theorem 1: When batch size is 1, the output y of

a FC layer is computed as y = xW T
+b, where x is the input

with size 1 × in_ f eature, (W, b) are the weight and bias
with size out_ f eature× in_ f eature and 1× out_ f eature,
respectively, and we have ( ∂ℓ

∂W )T
=

∂ℓ
∂W T = xT ∂ℓ

∂y = xT ∂ℓ
∂b ,
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then we have:

xT
= (

∂ℓ

∂W
)T (

∂ℓ

∂b
)T (

∂ℓ

∂b
(
∂ℓ

∂b
)T )−1 (3)

When batch size is more than 1, since b is broadcast into
b∗ = [b, . . . , b] with size batch × out_ f eature, we have

∂ℓ
∂b∗ (

∂ℓ
∂b∗ )

T
=

bbT . . . bbT

. . . bbT . . .

bbT . . . bbT

 = bbT

 1 . . . 1
. . . 1 . . .

1 . . . 1

, where

the second matrix (batch×batch) is not invertible and Eq. (3)
fails.

Definition 1 (Privacy Score): Based on the reconstructed
data, we introduce privacy score metric where we directly
add up the absolute distance for continuous features, and then
we project the data into their original feature space and set
the distance of discrete features to 1 if they don’t match the
original value. The overall score computation is:

score(x, x∗) =

∑
i∈Sc
|xi − x∗i | +

∑
i∈Sd

equal(X i , X∗i )

|Sc| + |Sd |
(4)

where Sc and Sd denote the continuous and discrete features,
X and X∗ are projected features with original value ranges,
equal(x1, x2) = 1 if x1 = x2, and it gets 0 otherwise. In this
way, we can quantitatively evaluate the privacy leakage for
each defense for FL-based NIDS.

C. Evasion Rate via Adversarial Attack

As long as the adversary obtains enough reconstructed
data using either inversion attack or extraction attack, he/she
can launch black-box attack by filtering out benign traffic
to train GAN to generate adversarial examples from random
noises. In addition, the adversary can also perform white-box
attack like PGD [34] that directly perturbs the reconstructed
malicious traffic to reach better evasion rate than black-box
methods.

Definition 2 (Evasion Rate): We derive evasion rate (ER)
using the generated adversarial traffic to attack the trained
DNN-based FL model and Kitsune. For more straight evasion
results, we present model accuracy ACCDN N for DNN model
where E R = 1 − ACCDN N , and Root Mean Squared Error
RM SE for Kitsune model, where E R = 1 when RM SE is
lower than threshold and E R = 0 otherwise.

D. Evaluation Example

1) Example of Privacy Score: To better understand the
privacy metrics, we first evaluate model utility and privacy
score on several existing defenses (optimal parameters) against
inversion attack and list some reconstructed normalized fea-
tures in TABLE II, where x and x∗ denote the original
and reconstructed traffic feature, respectively. Smaller score
generally means more privacy leakage. Model without defense
is the most vulnerable with the lowest privacy score (6.6e-
4) and the adversary can almost perfectly recover continuous
and discrete traffic features, while the other four defenses can
achieve higher score (3.3e-3 to 2.8e-1) with less data leakage.
However, deploying defenses can degrade the FL model utility,
where Instahide performs the worst with 4.6% accuracy loss
in exchange for such privacy guarantee.

TABLE II
RECONSTRUCTION EXAMPLE ON KDD99 DATASET, ACC DENOTES THE

FL MODEL ACCURACY, PS DENOTES PRIVACY SCORE. WE PRESENT
NORMALIZED AND ORIGINAL VALUE FOR DISCRETE FEATURES*

Fig. 2. Evasion rate on Kitsune and FL-NIDS models for KDD99 and Mirai
dataset.

2) Example of Evasion Rate: To further demonstrate the
consequences of reconstruction attack, we leverage black-box
attack as an example and evaluate evasion rate of adversarial
examples (AEs) on Kitsune [12] and trained DNN-based
FL-NIDS (refer to Section VI-C for setup). Fig. 2 illustrates
the RMSE and accuracy change during the training process.
We can find that even DP with such strong privacy guarantee
can sometimes induce successful evasion. For example, RMSE
for DP is under the threshold for KDD99 dataset against
Kitsune and thus E R = 1, while for the DNN model, the
accuracy also drops to 0 for Mirai dataset. The other defenses
can only perform worse, which poses great potential threats
to users. We also notice that AEs under DP perform relatively
worse than other baselines, which corresponds to TABLE II
that DP achieves higher privacy score (2.8e-1) and induces
less data privacy leakage.

In summary, our proposed metrics are practical to evaluate
the robustness of FL-based NIDSs combined with different
defenses, and the example results demonstrate the insufficiency
of existing defenses. Therefore, it is critical to design a new
defense approach to build a more robust NIDS that preserves
traffic data privacy without damaging model performance.

IV. FEDDEF: OPTIMIZATION-BASED INPUT
PERTURBATION DEFENSE

In this section, we present our defense FedDef. We intro-
duce detailed optimization design and also implementation
with a representative FL framework, i.e., FedAvg.

A. Overview of FedDef

As illustrated in Fig. 3, local users first download the
latest global model from the server. During local training,
users first leverage FedDef to transform their own private
data into pseudo data such that the data are dissimilar to
preserve privacy and the corresponding gradients are similar
to preserve FL model performance. Then the users update the
corresponding pseudo gradient instead of the original gradient.

The right side in Fig. 3 illustrates the adversary manip-
ulating the reconstructed data to attack the target models.
The adversary first leverages reconstruction attack to recover
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Fig. 3. Overview of FedDef.

user’s private training data and labels from the gradients, then
black-box adversarial attack is available using GAN to evade
the FL model or other NIDSs such as Kitsune. While our
defense ensures that the adversary can reconstruct only the
pseudo data, which cannot help GAN model converge and
therefore the adversarial attack fails.

B. Optimization Design of FedDef

Privacy preserving and model performance are two key indi-
cators for FL, users collaboratively train a global robust model
to acquire high detection results on intrusion attacks while also
protecting their private data from information leakage. Based
on these two aspects, we design a novel defense scheme for
NIDS, i.e., FedDef, aiming to (1) preserve data privacy against
reconstruction attack and the following adversarial attack, and
(2) maintain FL model performance.

1) Privacy Preserving: To address the privacy concern,
we prevent privacy leakage from the source. The input training
data should be dissimilar from the original data, and we have
the following optimization:

argmaxx ′,y′ D(x ′, y′; x, y) (5)

where x and y are the original input data and labels, x ′ and
y′ are the pseudo pair for later pseudo gradient computation.
D(·; ·) denotes the distance metric that evaluates how dissim-
ilar (x ′, y′) is from (x, y), where features and labels require
different techniques.

a) Data transformation: According to the inversion
attack and extraction attack introduced in Eq. (1) and Eq. (3),
the reconstructed features x∗ depend on the absolute numerical
values of x ′, therefore, we optimize x ′ to be as far from x as
possible by L2 distance metrics as argmaxx ′ ∥x ′ − x∥2.

However, the reconstructed data x∗ is always projected into
[0, 1]dim , where dim is the feature dimension of x and x∗.
Therefore, it makes no difference to the reconstructed data x∗

when x∗ ≤ 0 or x∗ ≥ 1. Due to the consideration above,
we can constrain the upper bound of the L2 distance and
rewrite the optimization with respect to x ′ as

argminx ′ ReLU (δ − ∥x ′ − x∥2) (6)

where δ is the upper bound of the distance between x and x ′,
and ReLU (x) = max(0, x), which ensures the distance is as
large as possible while also guaranteeing the upper bound.

b) Label transformation: On the contrary, the recon-
structed labels y∗ do not rely on the absolute numerical values
of y′, instead the adversary takes the index i of the maximum

label probability y∗i as the final label, therefore increasing the
overall distance between y′ and y does not guarantee label
privacy. For example, let i be the index of y, yi = 1 and
y j = 0,∀ j ∈ [1, n], j ̸= i , where n is the total label classes.
By leveraging L2 distance metric to optimize y′, we may
obtain y′ where y′i = 2 and y′j = 1,∀ j ∈ [1, n], j ̸= i . In this
way, though the overall distance between y′ and y is quite
large, the adversary may still acquire the correct label i since
y′i is the maximum one in y′ and the reconstructed label y∗i
may also share the same property, therefore, label information
is extracted by equation i = argmax(y∗).

To address this problem, we choose to minimize y′i so that it
stays the minimum one in y′ and the adversary will probably
get any indexes other than the ground-truth label i . Specifi-
cally, we first locate the label index i in y, and we minimize y′

such that the minimum one y′min is as close to y′i as possible
which can be formulated as argminy′ |y′min − y′i |, where | · |
denotes the absolute distance. In this way, we optimize y′i to
be the minimum one in y′ so that the adversary will most
probably reconstruct any indexes except i .

Finally, we formulate the optimization for privacy preserv-
ing as follows:

argminx ′,y′ ReLU (δ − ∥x ′ − x∥2)+ |y′min − y′i | (7)

where i denotes the ground-truth label index such that yi = 1,
and y′min is the minimum one in y′.

2) Model Performance: To maintain FL model perfor-
mance, we choose to add a constraint for the pseudo gradient
∇θ(x ′, y′) generated by the pseudo data and label (x ′, y′)
to be as close to the original gradient ∇θ(x, y) as possible.
In particular, we expect the L2 distance between the pseudo
gradient and the original gradient to be within ϵ boundary,
which can be written as

s.t. ∥∇θ(x ′, y′)−∇θ(x, y)∥2 ≤ ϵ (8)

However, such constraint is highly non-linear and thus we
transform the constraint into an optimization problem using
ReLU function as

argminx ′,y′ ReLU (∥∇θ(x ′, y′)−∇θ(x, y)∥2 − ϵ) (9)

Finally, we can combine the two objective functions to opti-
mize (x ′, y′) such that the pseudo data and the original data
are dissimilar to preserve data privacy and the correspond-
ing gradients are similar to maintain model performance.
In particular, we can derive the combined optimization

Authorized licensed use limited to: Tsinghua University. Downloaded on November 29,2024 at 09:25:03 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: FedDef: DEFENSE AGAINST GRADIENT LEAKAGE IN FL-BASED NIDSs 4567

as follows:

argminx ′,y′ L Pri + αL Per

L Pri = ReLU (δ − ∥x ′ − x∥2)+ |y′min − y′i |

L Per = ReLU (∥∇θ(x ′, y′)−∇θ(x, y)∥2 − ϵ) (10)

where L Pri and L Per stand for optimization loss for privacy
preserving and FL model performance, respectively. α is a
parameter that evaluates the tradeoff between privacy and
model performance. The overall algorithm is illustrated in
Algorithm 1.

Algorithm 1 Transformation of Private Data and Label
Input: original data pair (x, y), global differentiable

model parameters θ , loss function F , defense
epochs de f _ep, privacy tradeoff α, learning
rate de f _lr , constant g_value, ϵ, δ

Output: pseudo data pair (x ′, y′)
1 x ′← U (0, 1), y′← U (0, 1); ▷ random initialization
2 ∇θ(x, y)←

∂ F(θ,x,y)
∂θ

; ▷ original gradient
3 gt ← argmax(y); ▷ ground-truth label index of y
4 for i ← 1 to de f _ep do
5 ∇θ(x ′, y′)← ∂ F(θ,x ′,y′)

∂θ
; ▷ pseudo gradient

6 if max(|∇θ(x ′, y′)|) ≤ g_value then return x ′, y′;
7 ▷ early stop
8 loss ← ReLU (∥∇θ(x ′, y′)−∇θ(x, y)∥2 − ϵ) ▷

L2 distance
9 y′min ← min(y′);

10 loss ← α∗loss+ReLU (δ−∥x ′−x∥2)+|y′min−y′gt |;
11 x ′← Adam(x ′, ∂loss

∂x ′ , de f _lr); ▷ Adam optimizer
12 y′← Adam(y′, ∂loss

∂y′ , de f _lr);
13 end
14 return x ′, y′

Note that we leverage early stop to terminate the opti-
mization as long as the pseudo gradient tends to vanish.
In particular, we first set a predetermined constant g_value,
then we check the maximum absolute value of all gradients
of the FL model and stop the optimization whenever the
maximum value is lower than g_value (line 6). In this way,
we prevent extreme case of vanishing gradient and find it effec-
tive against extraction attack, because the pseudo gradients are
small enough that ∂ F

∂b ( ∂ F
∂b )T approaches 0 due to calculation

accuracy and thus matrix inversion in Eq. (3) fails, and global
model can still get updated in the meantime.

C. Implementation With FedAvg

We introduce how to combine FedDef with the classic
FL framework, i.e., FedAvg [14], to build a robust FL-based
NIDS. We first formulate our FL training objective in FedAvg:

argminθ {F(θ) =

N∑
k=1

pk Fk(θ)} (11)

where N is the total number of local users, pk is the
corresponding weight of the k-th user participating in the
global model training, and pk ≥ 0,

∑N
k=1 pk = 1.

θ is the parameter of the global differentiable model, Fk(·)

is the overall loss function for the k-th user (e.g., cross
entropy loss). N local users collaboratively train a global
NIDS model by solving optimization (11) iteratively. Here
we present one training round (e.g., t-th) with our defense as
follows:

(1) The server has learnt a global model θt at t-th round
and distributes the model to all the participants.

(2) Every local user (e.g., k-th) first initializes their model
with θt , i.e., θk

t = θt and then performs E ≥ 1 local updates.
Specifically, during each update, user first leverages FedDef
to transform their private data and label with the latest model
θk

t to generate pseudo data pair (x ′, y′) for pseudo gradient
computation. Therefore, the local model can be updated for
the i-th iteration as:

ξ
′k
t+i = Fed Def (ξ k

t+i ) (12)

θk
t+i+1← θk

t+i − ηt+i∇Fk(θ
k
t+i , ξ

′k
t+i ) i = 0, 1, . . . , E−1 (13)

where ξ k
t+i is a sample pair (i.e., (xk

t+i , yk
t+i )) uniformly

chosen from the k-th user’s private dataset. Fed Def is our
defense algorithm that outputs the pseudo data pair ξ

′k
t+i , ηt+i

is the learning rate for the i-th iteration. In this way, user
k performs Eq. (12) and Eq. (13) for E rounds and finally
obtains the local trained model θk

t+E .
Note that at each training round, the pseudo data pair ξ

′k
t+i

can be different due to different input data pair ξ k
t+i and the

newly updated FL model.
(3) After local training is complete, the central server

determines a set St , which contains a subset of K indices
randomly selected with replacement according to the sampling
probabilities p1, . . . , pN from the N users. Then the global
model is aggregated by simply averaging as:

θt+E ←
1
K

∑
k∈St

θk
t+E (14)

In this way, the global model θt+E can be updated with only
partial users, which can mitigate serious “straggler’s effect”,
where the server has to wait for the slowest (even offline)
user’s update and faces great time delay.

To evaluate the model performance of such FL-NIDS,
we directly feed the testing dataset to the DNN model without
Fed Def transformation to derive clean accuracy.

V. THEORETICAL ANALYSIS

In this section, we derive theoretical analysis of model
convergence and privacy guarantee for FedDef.

A. Convergence Analysis

We provide theoretical analysis for FL model convergence
using FedAvg combined with our defense. Our analysis fol-
lows [37] on the convergence of FedAvg on non-iid data with
partial users’ update.

We first make the five following assumptions same as [37]:
Assumption 1: F1, . . . , FN are all L-smooth, that is, for

all V and W , and any k ∈ [1, N ], Fk(V ) ≤ Fk(W )+

(V −W )T
∇Fk(W )+ L

2 ∥V −W∥22.
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Assumption 2: F1, . . . , FN are all µ-strongly convex, that
is, for all V and W , and any k ∈ [1, N ], Fk(V ) ≥ Fk(W ) +

(V −W )T
∇Fk(W )+

µ
2 ∥V −W∥22.

Assumption 3: Let ξ k
t be sampled from the k-th user’s local

data uniformly at random. The variance of stochastic gradients
for each user is bounded: E∥∇Fk(θ

k
t , ξ k

t )−∇Fk(θ
k
t )∥2 ≤ σ 2

k ,
for all k = 1, . . . , N .

Assumption 4: The expected squared norm of stochastic
gradients is uniformly bounded: E∥∇Fk(θ

k
t , ξ k

t )∥2 ≤ G2, for
all k = 1, . . . , N and t = 0, . . . , T−1, T is the total iterations
of local users’ updates.

Assumption 5: Assume St contains a subset of K indices
randomly selected with replacement according to the sampling
probabilities p1, . . . , pN . The aggregation step of FedAvg
performs θt ←

1
K

∑
k∈St

θk
t .

Theorem 2: Let F∗ and F∗k be the minimum values of F
and Fk , respectively. We use the term 0 = F∗ −

∑N
k=1 pk F∗k

to quantify the degree of non-iid. Recall that E denotes the
local updates for each user and T denotes the total iterations.
Let Assumptions 1-5 hold and L , µ, σk , G be defined therein.
Choose κ = L

µ
, γ = max{8κ, E}, and learning rate ηt =

2
µ(γ+t) . Then FedAvg with our defense with partial users
participation for non-iid data satisfies:

E[F(θT )] − F∗ ≤
2κ

µ+ T
(

B + C
µ
+ 2L∥θ0 − θ∗∥2) (15)

where

B =
N∑

k=1

p2
k (ϵ + σ)2

k + 6L0 + 8(E − 1)2(ϵ + G)2

C =
4
K

E2(ϵ + G)2 (16)

Proof of Theorem 2: We replace Assumptions 3-4 with our
pseudo gradients and then derive the Theorem 2. Without the
loss of generality, we consider the k-th user’s pseudo gradients’
property. We first present the following lemmas:

Lemma 1: Let ∥ ·∥2 be a sub-multiplicative norm, for all A
and B, we have ∥A∥2−∥B∥2 ≤ ∥A+B∥2 ≤ ∥A∥2+∥B∥2 and
∥AB∥2 ≤ ∥A∥2∥B∥2.

Lemma 2: Let ∥ · ∥2 be a sub-multiplicative norm, for all
A and B, we have E2

∥A∥2∥B∥2 ≤ E∥A∥22E∥B∥22.
The proof of Lemma 1 and 2 can be naturally obtained with

norm triangle inequality and Cauchy–Schwarz inequality.
Lemma 3: Let ∥ · ∥2 be a sub-multiplicative norm, for all

A and B, we have E∥A + B∥22 ≤ (

√
E∥A∥22 +

√
E∥B∥22)

2.
Proof of Lemma 3:

E∥A + B∥22 ≤ E(∥A∥2 + ∥B∥2)2

= E∥A∥22 + E∥B∥22 + 2E∥A∥2∥B∥2

≤ E∥A∥22 + E∥B∥22 + 2
√

E∥A∥22E∥B∥22

= (

√
E∥A∥22 +

√
E∥B∥22)

2 (17)

1) Replace Assumption 3: According to our optimiza-
tion (10), the pseudo gradients’ L2 distance from the original
are constrained within ϵ. Therefore, the following equation

holds:

E∥∇Fk(θ
k
t , ξ

′k
t )−∇Fk(θ

k
t , ξ k

t )∥22 ≤ ϵ2 (18)

The variance of the pseudo stochastic gradients for each user
is bounded with Lemma 3:

E∥∇Fk(θ
k
t , ξ

′k
t )−∇Fk(θ

k
t )∥2

= E∥∇Fk(θ
k
t , ξ

′k
t )−∇Fk(θ

k
t , ξ k

t )

+∇Fk(θ
k
t , ξ k

t )−∇Fk(θ
k
t )∥22

≤ (

√
E∥∇Fk(θ

k
t , ξ

′k
t )−∇Fk(θ

k
t , ξ k

t )∥22

+

√
E∥∇Fk(θ

k
t , ξ k

t )−∇Fk(θ
k
t )∥22)

2

≤ (ϵ + σk)
2 (19)

2) Replace Assumption 4: We leverage similar method to
replace Assumption 4 with our pseudo gradient, the expected
squared norm of pseudo stochastic gradients is uniformly
bounded:

E∥∇Fk(θ
k
t , ξ

′k
t )∥2

= E∥∇Fk(θ
k
t , ξ

′k
t )−∇Fk(θ

k
t , ξ k

t )+∇Fk(θ
k
t , ξ k

t )∥22

≤(

√
E∥∇Fk(θ

k
t , ξ

′k
t )−∇Fk(θ

k
t , ξ k

t )∥22+

√
E∥∇Fk(θ

k
t , ξ k

t )∥22)
2

≤ (ϵ + G)2 (20)

In this way, we can replace the bound of the original gradi-
ents in Assumptions 3-4 with our pseudo gradients. Therefore,
Assumptions 1-5 hold with our defense. By applying our new
bounds in [37], we can derive Theorem 2 aforementioned.

B. Privacy Analysis

We provide theoretical analysis for data privacy with our
defense. Specifically, we derive a possible lower bound for
the deviation of pseudo data x ′ from the original x using
the derivatives of the first layer. We first make the following
assumption:

Assumption 6: Assume that there exist both weight W and
bias b in the first layer of the model, and that the norm of the
gradient with respect to the bias is bounded for some M > 0:
∥

∂ F
∂b ∥2 ≤ M .
Theorem 3: Let Assumption 6 hold, (x, y) be the original

data pair after normalization, (x ′, y′) be the transformed data
pair with our defense, ∇b = ∂ F(θ,x,y)

∂b , ∇W = ∂ F(θ,x,y)
∂W ,∇b′ =

∂ F(θ,x ′,y′)
∂b , ∇W ′ = ∂ F(θ,x ′,y′)

∂W and we have the following
theorem to guarantee data privacy.

∥x ′ − x∥2 ≥
2(∥∇W ′ −∇W∥2 − ∥∇b′ −∇b∥2)

2M + ∥∇b′ −∇b∥2
(21)

Proof of Theorem 3: We can derive that ∇W T
= xT

∇b
and ∇W ′T = x ′T∇b′, therefore, we have the following
transformation:

2(∇W −∇W ′)T
= (x − x ′)T (∇b +∇b′)

+ (x + x ′)T (∇b −∇b′) (22)
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TABLE III
DATASETS USED IN OUR WORK

With Lemma 1, we can derive the inequality on the one
hand:

∥(x − x ′)T (∇b +∇b′)∥2 ≤ ∥x − x ′∥2∥∇b +∇b′∥2
≤ ∥x − x ′∥2(∥∇b∥2 + ∥∇b′∥2)

≤ 2M∥x − x ′∥2 (23)

Note that ∥x∥2 ≤ 1 since x is normalized. Therefore, on the
other hand, we also have:

∥(x − x ′)T (∇b +∇b′)∥2
= ∥2(∇W −∇W ′)T

− (x + x ′)T (∇b −∇b′)T
∥2

≥ 2∥(∇W −∇W ′)∥2 − ∥(x + x ′)T (∇b −∇b′)T
∥2

≥ 2∥(∇W −∇W ′)∥2 − ∥(x + x ′)∥2∥(∇b −∇b′)∥2
= 2∥(∇W −∇W ′)∥2 − ∥(x ′ − x + 2x)∥2∥(∇b −∇b′)∥2
≥ 2∥(∇W −∇W ′)∥2 − (∥x ′ − x∥2 + 2∥x∥2)∥(∇b −∇b′)∥2
≥ 2∥(∇W −∇W ′)∥2 − (∥x ′ − x∥2 + 2)∥(∇b −∇b′)∥2

(24)

Therefore, by combining the above inequalities, we have:

2M∥x ′ − x∥2 ≥ 2∥(∇W −∇W ′)∥2
− (∥x ′ − x∥2 + 2)∥(∇b −∇b′)∥2 (25)

By extracting ∥x ′ − x∥2, we have Theorem 3.

VI. EVALUATION

In this section, we conduct several experiments to evaluate
our defense from two perspectives: (1) Model utility under iid
and non-iid data distribution. (2) Privacy protection using the
two proposed metrics, i.e., privacy score (plus label reconstruc-
tion accuracy) and evasion rate. We also conduct ablation study
to derive optimal parameters combination and test computation
overhead.

A. Experimental Setup

We conduct our experiments using PyTorch with 8-core,
64GB CPU and one NVIDIA-P100 (16GB) GPU. The basic
experiments setting is as follows:

1) Datasets: We choose four network intrusion attack
datasets to evaluate our defense, including KDDCUP’99 [38]
(abbreviated as KDD99), Mirai botnet [12], CIC-IDS2017 [30]
(abbreviated as CIC2017), and UNSW-NB15 [40] (abbreviated
as UNSW). Mirai botnet contains only one type of malicious
traffic named Botnet Malware and the other three datasets
contain multiple attack types. To further balance the datasets,
we select only DDoS attack traffic from CIC-IDS2017 so that
we evaluate on two 2-class dataset (i.e., Mirai Botnet and CIC-
IDS2017) and two multi-class datasets (i.e., KDDCUP’99 and
UNSW-NB15). More details can be found in TABLE III.

2) FL Model: We derive our global NIDS model under
FedAvg framework with 10 local users collaboratively training
a 3-layer fully connected DNN with layer sizes [dim, 2∗dim,
3∗dim, n], where dim denotes the feature size and n denotes
attack types. The first two layers both consist of a linear
network with ReLU activation function, while the third layer
also has a linear network with softmax that projects the output
vector into label class probability.

3) Baselines and Parameters Configuration: We choose five
baselines mentioned in Section II-C to compare with our
work, including no defense, Soteria, gradient pruning (GP),
differential privacy (DP), and Instahide.

For our defense, we set the default parameter as ϵ = 0,
δ = 1, g_value = 1e − 15, learning rate de f _lr = 2e − 1,
and steps de f _ep = 40 unless otherwise specified, we also
set α = 0.25, 0.5, 1 accordingly to observe its impact.

For other defenses, we optimize the parameters to achieve
the best tradeoff between performance and privacy. Specifi-
cally, we set the gradient compression rate to 99% for GP,
and we leverage Laplace noise and set the mean and variance
of the noise distribution as 0 and 0.1 for DP, while following
the default setting for Soteria and Instahide.

4) Evaluation Metrics: We leverage FL model accuracy to
evaluate defense’s utility. For privacy guarantee, we derive
privacy score (plus label reconstruction accuracy) and evasion
rate as introduced in Section III.

B. Model Performance Results

1) Setup 1: We evaluate FL model accuracy as introduced
in Section VI-A with Adam optimizer with learning decay.
We first divide the original datasets to derive training dataset
and testing dataset by 7 : 3, and each user can get certain
amount of the training dataset under iid or non-iid setting.

We design a new non-iid data generation algorithm. Specif-
ically, each user can randomly get the same percent of the
benign traffic, and then we randomly select p > 0 attack
types and distribute the same percent ( 1

10 in our case) of that
specific malicious traffic. To balance the result, we consider
non-iid data distribution for multi-class KDD99 dataset, and
iid data distribution for the other three datasets, where each
user gets the same percent of the whole training dataset. After
dataset distribution, local users normalize their own datasets
with maximum/minimum values.

We set the overall training rounds T = 300, and each user
updates the global model only once local_ep = 1 with batch
size local_bs = 1000. We follow the same parameter setting
introduced in Section VI-A and we optimize the local training
learning rate for different defenses and datasets. Detailed
parameters are illustrated in TABLE IV, where no defense
is around 1e-2, ours is around 1.5e-2, and strong defense like
DP requires higher learning rate as 3e-2, otherwise such great
noises to the gradients can hardly help optimize the model.
Note that we also leverage learning rate decay to accelerate
the model convergence. Specifically, the learning rate lr is
updated every 20 rounds as lr = lr × decay, therefore, lr is
getting smaller as the model is approaching convergence to
avoid performance oscillation.
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TABLE IV
PARAMETER SETTING FOR MODEL PERFORMANCE EVALUATION PRESENTED AS LEARNING RATE/DECAY

TABLE V
ACCURACY COMPARISON ON FOUR DATASETS, HIGHER IS BETTER

2) Accuracy Analysis: We run the training for five times and
report the best results for baselines and the average accuracy
for our defense in TABLE V. It can be found that our defense
with α = 1 achieves similar performance from the baseline
with at most 2.6% accuracy loss (from UNSW dataset) and
the least deviation under iid or non-iid setting. As α tends to
get smaller, Eq. (10) tends to optimize pseudo data’s privacy
more than pseudo gradients’ utility, which is why FedDef
with α = 0.25 achieves lower accuracy with greater deviation
(0.01 at most). Meanwhile, we also compare our defense
with other baselines and find that Soteria achieves the highest
accuracy with only 1% loss at most while Instahide generally
performs the worst. We suspect that the reason for Instahide’s
poor performance is that it randomly flips certain signs of
the mixed data to provide additional security protection in
exchange of model performance.

In summary, the FL model can still converge and reach high
accuracy combined with our defense, thanks to our constraints
on gradient deviation.

C. Model Privacy Results

We evaluate model privacy with privacy score and evasion
rate for different local training batches and training stages.

1) Single Sample Reconstruction: We first consider local
users updating model only once with only one training sample.
In this scenario, the adversary can launch both inversion attack
and extraction attack.

a) Setup 2: We evaluate privacy score with inversion
attack using appropriate distance metric to optimize the
reconstruction, i.e., we use cosine distance for KDD99 and
CIC-IDS2017 datasets during late training stage and L2 for
the rest of the cases. Note that extraction attack may fail due
to calculation accuracy when gradients are small, and we will
fall back to inversion attack when Eq. (3) fails. As introduced
in Section II-B, we can only derive data from extraction attack,
therefore, we leverage optimization-based inversion attack to
acquire labels. We follow the same parameter setting as in
Section VI-A, and we set the overall iteration T = 100, local
batch size local_bs = 1, local step local_ep = 1 for both
early and late stages. Note that we use the randomly initialized

TABLE VI
LABEL RECONSTRUCTION ACCURACY COMPARISON ON

FOUR DATASETS, AND LOWER IS BETTER

model for early stage and the respective trained model in
Section VI-B for late training stage, we do not actually update
the model to constantly evaluate privacy score.

b) Privacy score analysis: The full results for average
privacy score and reconstructed label accuracy over the T
samples are in Fig. 4 and TABLE VI. During early training
stage, the reconstruction attack proves excellent performance,
where the privacy score can reach almost 0 without any
defense and labels are also accurately extracted (ACC=1)
among four datasets. The baseline defenses provide some but
limited protection, especially against more accurate extraction
attack.

On the contrary, our defense outperforms other baselines
and significantly mitigates such attacks in a way that the score
is around 0.6-0.7 with α = 1, which is 1.5-7 times higher
than the second best DP with privacy score around 0.1-0.4,
and it tends to get even higher with smaller α and against
stronger extraction attack. Our defense also prevents the label
leakage especially for multi-class datasets with almost 0 label
inversion accuracy compared to 0.26-1.00 for baselines, while
it may perform worse for two-class datasets where labels are
easier to obtain. Overall, the privacy is well protected with
little information leakage. Interestingly, Soteria almost proves
no privacy protection against either attack, we suspect it’s
because we don’t leverage CNN as our feature extractor and
that Soteria only perturbs the gradients of the defended layer
while the rest still carry much private information.

During the late training stage, the shared gradients tend
to get smaller, and such optimization-based attack performs
worse because it’s more difficult to optimize the dummy
gradient to fit the original one. As illustrated in Fig. 4 and
TABLE VI, the privacy score using inversion attack varies
from 0.2 to 0.5 even for gradients without defenses, and
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Fig. 4. Reconstruction privacy score comparison on KDD99 and Mirai datasets, higher is better.

Fig. 5. Black-box adversarial attack against two NIDSs with extraction attack for single sample reconstruction during early stage. The first row is the average
RMSE score change (higher is better) for Kitsune during the GAN training process, the black line represents the optimal threshold, and the second row
represents the DNN accuracy change (lower is better).

the label accuracy also drops from 1 to even 0.52 for CIC-
IDS2017 dataset. Nonetheless, our defense still generally
outperforms other baselines where extraction attack performs
with similar privacy score to that of early stage because matrix
inversion is always accurate. We also notice that smaller α may
induce even lower score because the gradients are of small
magnitude and thus may trigger falling back from extraction to
inversion attack, which makes the reconstruction results more
unstable.

c) Setup 3: We first evaluate evasion rate (E R) using
black-box attack as introduced in Section III-C. For early
stage, we recover 100 reconstructed benign traffic using
extraction attack to train GAN to generate 100 randomly
initialized adversarial examples (AEs) against two NIDSs, i.e.,
Kitsune and the trained global DNN model with corresponding
defenses. While we repeat the process for late stage with
inversion attack for our defense with α = 1 only since
extraction attack presents similar privacy score. For Kitsune
setup, we train it with the four datasets and determine optimal
thresholds respectively. For the trained DNN-based FL model,

we only consider either normal or malicious for evasion
results.

d) Black-box adversarial attack: The evasion results for
early and late stages are in Fig. 5 and Fig. 6. For early
stage, we can find that almost all baselines fail to prevent
such adversarial attack (E R = 1 for RMSEs lower than
threshold) except for Mirai dataset, where threshold is more
strict and DP may be sufficient with strong privacy guarantee,
while our defense consistently outperforms baselines that the
curve under FedDef doesn’t converge with higher RMSE
around 0.8-1.5, which is 2-15 times higher than threshold
and thus AEs fail to evade Kitsune (E R = 0). However,
it’s easier to evade the target DNN model (E R = 1 when
ACCDN N = 0) even with our defense for CIC-IDS2017
dataset. It’s because we also leverage DNN model to train
GAN, therefore, evading discriminator also means likely eva-
sion on DNN model.

While in late training stage, inversion attack can be quite
unstable thus the recovered data approaches random guess,
which is why RMSE is similar to that of randomly initialized
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Fig. 6. Black-box adversarial attack against two NIDSs with inversion attack
for single sample against our defense with α = 1 during late stage.

Fig. 7. Black-box adversarial attack for KDD99 dataset with inversion attack
against Kitsune during early stage when batch size = 5/10.

data (RMSE is still higher than threshold and E R = 0), and
accuracy (also for E R) is around 0.5.

2) Batched Samples Reconstruction: We study a more prac-
tical scenario with multi-sample reconstruction.

a) Setup 4: We evaluate E R using inversion attack to
reconstruct data and labels because we proved in Section III
that extraction attack is only effective when batch size is 1.
Note that we don’t consider the specific privacy score because
the reconstructed data may have different permutations and it’s
hard to correspond them to the ground-truth data and label.
Instead, we directly apply the data with benign labels to train
the GAN model for black-box attack scenario.

b) Black-box adversarial attack: The representative
results for KDD99 dataset with batch size 5 and 10 are
illustrated in Fig. 7. We can observe that with larger batch
size, the inversion attack may perform worse and therefore
may slightly degrade our defense (RMSE is around 0.8-1.0
compared to 1.0-1.2 when batch size=1), yet the overall results
are similar to that of single sample reconstruction (E R = 0 for
FedDef and E R = 1 for baselines mostly), which further
demonstrates the threats in practical training.

3) White-Box Adversarial Attack: To further evaluate the
privacy leakage in reconstructed data, we also conduct several
white-box adversarial attacks against the two NIDSs.

a) Setup 5: Recall that for GAN-based black-box attack,
we recover benign traffic so as to generate malicious traffic
from random examples. While in white-box attack scenario,
we directly reconstruct malicious training data and perform
different adversarial attacks on the samples themselves to
evade the target model.

Specifically, we recover 100 malicious traffic (based on the
reconstructed label) using inversion attack per sample in early
stage for different defenses. Then we perform the following
attacks to generate adversarial examples:
• FGSM [41] utilizes the sign of the gradient of the cross-

entropy (CE) loss associated with the target label to obtain
perturbation.

TABLE VII
WHITE-BOX ATTACK PARAMETER SETTING

• CW [42] generates adversarial perturbations by solving a
norm-restricted constrained optimization problem, where the
loss has in contrast to the CE loss a direct interpretation in
terms of the decision of the classifier.
• PGD [34] is an extension of the FGSM. It initializes the

attack at a random point in the L p ball constraint and projects
the perturbation back onto the L p ball after every iteration.
• DeepFool [35] is an untargeted attack under the assump-

tion that deep learning models are linear, with a decision
boundary (i.e., hyperplanes) separating each class. On every
iteration, DeepFool linearizes the classifier around the current
point x and computes the perturbations as an orthogonal
projection vector that projects x onto the closest hyperplane.
• AutoPGD [36] is a budget-aware step size-free variant

of PGD that induces failures due to suboptimal step size and
the objective function. Instead it automatically adjusts the step
size and chooses Difference of Logits Ratio (DLR) loss, which
is both shift and rescaling invariant, and thus has the same
degrees of freedom as the decision of the classifier.

For implementaion, we leverage the open-source package
torchattacks [43], which provides unified API for different
adversarial attacks. For attack initialization, we present some
key parameters for each attack in TABLE VII. Note that for
CW attack, we leverage parameter c to adjust the weights
for distance optimization. For DeepFool, the perturbation is
usually too large to be valid, therefore, we manually add
ϵ parameter to constrain the maximum perturbation on the
final output to ensure practical attack. For other parameters,
we follow the default setting in torchattacks for each attack.

For the trained DNN model, we apply the 5 attacks men-
tioned above in targeted mode by labels where malicious
traffic are projected into benign class, except for untargeted
DeepFool that perturbs the traffic in the direction of the closest
label class. Specifically, we empirically set ϵ = 40/255, α =

6/255 for KDD99, Mirai, UNSW datasets, ϵ = 4/255, α =

2/255 for CIC2017 dataset, and c = 0.01, step = 100 for all
scenarios.

For the unsupervised Kitsune model, the output is the
anomaly score instead of possibility vector. Therefore, Deep-
Fool and AutoPGD are unavailable because DeepFool requires
the label classification of the adversarial examples to compute
the perturbation towards the closest class. While AutoPGD
also needs the output of DNN vector to obtain DLR loss
and update the step size. Therefore, we only adapt FGSM,
CW, and PGD attacks, where we change the CE loss to
the anomaly score output from Kitsune. In this way, we can
minimize the score to fool the model to classify the adversarial
examples as benign as long as the score is lower than the
threshold.

In this scenario, we can conduct ablation study on the
key parameters since anomaly score can convey direct impact
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TABLE VIII
WHITE-BOX ADVERSARIAL ATTACK AGAINST DNN MODEL. WE PRESENT AS (MODEL ACCURACY)/(L2 PERTURBATION DISTANCE)

AS BELOW, HIGHER IS BETTER FROM DEFENDERS’ VIEW

of the parameter on the adversarial attacks. Specifically,
we choose c = 1e − 2, 1e − 3, 1e − 4 for CW attack and
ϵ = 10/255, 40/255, 80/255 for PGD attack, ϵ = 40/255 is
constant for FGSM attack since it’s a simple version of PGD.

b) DNN analysis: TABLE VIII illustrates the results of
white-box adversarial attacks against DNN model. We present
the classification accuracy and the perturbation distance of
the adversarial examples under different attacks and defenses.
Higher accuracy means better defense because the recon-
structed traffic are further from the original distribution of the
user training data, therefore, limited perturbation is not enough
to evade the target model. The evasion rate is consistent with
the definition in Section III-C that E R = 1− ACCDN N .

From defenders’ view, we can conclude that our defense
FedDef achieves the highest accuracy for most of the cases
when α = 1 (57%-91%) and all the cases when α = 0.5, 0.25
(91%-100%). This corresponds with the fact that lower α

means better privacy optimization, therefore, the reconstructed
malicious traffic carry less information and can be harder to
be perturbed. While Instahide also performs well with high
accuracy, which means that mixed training data can already
achieve moderate privacy guarantee by incorporating different
label classes. Soteria and GP still perform worse since the
reconstructed data are just similar to the baseline defense.

From attackers’ view, PGD attack generally works better
with lower accuracy (also higher evasion rate) with reason-
able perturbation, followed by FGSM, CW, AutoPGD, and
DeepFool. This illustrates that DLR loss in AutoPGD may
not be an optimal choice compared with traditional CE loss in
this case. While DeepFool only targets the nearest label class
instead of benign class and thus cannot work as well as other
targeted attacks.

In some scenarios, CW attack works better than PGD
with higher accuracy and lower perturbation range (e.g., 12%
vs. 44% for Instahide defense for Mirai dataset), thanks to
the optimization of both perturbation distance and evasion
rate. During the experiments, some adversarial examples are

not perturbed at all (distance=0), this is because CW only
updates the examples when classification reaches the target
benign label and the perturbation distance is lower. Therefore,
it won’t perform perturbation if the reconstructed malicious
data themselves are benign (0%/0.00 for No defense for
CIC2017 dataset) since distance=0 is already the lowest case,
or if the adversarial examples can never reach benign class
(100%/0.00 for FedDef when α = 0.5 for Mirai and CIC2017
datasets).

c) Kitsune analysis: We present model accuracy and the
average anomaly score for Kitsune model in TABLE IX.
Among the 100 perturbed reconstructed traffic data, those
with scores lower than the model threshold are considered to
successfully evade Kitsune. Therefore, higher anomaly score
and accuracy means better defense performance.

For better comparison, we also present the anomaly score
for each defense before the adversarial attack in TABLE X.
From defenders’ view, FedDef still outperforms all the base-
lines in terms of both accuracy and score. We can find that
the anomaly score for FedDef before the attack is already high
enough (0.77-1.24 when α = 1) and thus model accuracy is
always 100%. In contrast, for KDD99 and UNSW datasets, the
original scores for no defense (0.27/0.12), Soteria (0.27/0.11)
and GP (0.25/0.08) are low enough to evade Kitsune, let
alone the adversarial score. While DP and Instahide present
relatively higher scores, yet adversarial perturbation can still
render some scores lower than the threshold, resulting in
16%-81% and 85%-100% accuracy for KDD99 respectively.
This corresponds with the privacy score in Fig. 4. In other
words, FedDef outperforms DP and Instahide, which again
outperform GP and Soteria.

However, the threshold for CIC2017 is so low (0.08), and
even PGD attack can hardly render the adversarial examples
successful. PGD with ϵ = 80

255 perturbation range can only
achieve 91% for no defense. Yet we can still come to similar
conclusion as DNN model analysis for other three datasets for
each defense.
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TABLE IX
WHITE-BOX ADVERSARIAL ATTACK AGAINST KITSUNE MODEL. WE PRESENT AS (MODEL ACCURACY)/(ANOMALY SCORE)

AS BELOW, HIGHER IS BETTER FROM DEFENDERS’ VIEW

TABLE X
ORIGINAL ANOMALY SCORE OF THE RECONSTRUCTED MALICIOUS DATA AGAINST KITSUNE MODEL

From attackers’ view, PGD attack still works better than
FGSM and CW. Specifically, given the same ϵ = 40

255 , PGD
can achieve lower score and accuracy (e.g., 4%/0.31 and
8%/0.32 for Mirai dataset for no defense). While CW with
lower distance constraint c can also reach better evasion rate,
PGD generally works better if we correspond c and ϵ in order
(e.g., 0%/0.16-25%/0.25 and 0%/0.24-25%/0.27 for KDD99
for no defense).

Note that CW attack also requires successful evasion
(DNN’s target classification or scores lower than the threshold)
to actually update the adversarial example, therefore, it also
cannot perturb FedDef’s reconstructed data due to our better
privacy protection (the same anomaly score as the original).
While PGD attack can always set higher ϵ to ensure successful
evasion (at higher perturbation price), which is more feasible
than CW since constraint c has a limit 0.

4) Conclusion: We briefly conclude our privacy analysis.
In general, our defense outperforms all current defenses with
high privacy score and low evasion rate even with strong model
performance guarantee (ϵ = 0) for single or multiple samples,
in both training stages, against either privacy attack, and the
following black-box and white-box adversarial attacks.

D. Ablation Study

So far, we have demonstrated our defense’s model perfor-
mance and privacy preserving guarantee. Next we will study
some parameter impact on the overall performance of FedDef.

1) Setup 6: We evaluate model accuracy and privacy score
(plus label accuracy) on KDD99 dataset to study the optimal
parameter combination with respect to α, de f _lr and de f _ep
with determined ϵ and δ. Firstly, we choose our optimal
α = 1 because it induces the best accuracy performance
and privacy score is high enough to mitigate the adversarial
attack. We follow the same experiment setting for model per-
formance and privacy evaluation as introduced in Section VI-B
and VI-C.

2) Ablation Analysis: The average privacy score and accu-
racy results over five training times can be found in TABLE XI
and Fig. 8. We can find that higher learning rate generally
reduces the steps needed to fully optimize pseudo data. Specif-
ically, it takes de f _lr = 3e − 2, 8e − 2, 2e − 1 about 70, 50,
40 steps accordingly to achieve model accuracy as high as
0.987, while also achieving similar privacy score as high as
0.78. However, when de f _lr is 0.2, more optimization steps
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TABLE XI
ACCURACY COMPARISON ON KDD99 DATASETS FOR DIFFERENT PARAMETERS WITH BASELINE 0.996, HIGHER IS BETTER

Fig. 8. Ablation study on de f _lr during early training stage on KDD99
dataset with inversion attack for single sample reconstruction.

can induce privacy loss (only 0.6 score for de f _ep = 100 and
0.07 reconstructed label accuracy) during early stage (see
Fig. 8) which means pseudo data is over-optimized.

Due to the above consideration, we recommend predeter-
mined constants ϵ = 0, δ = 1, g_value = 1e − 15, and key
parameter α = 1, de f _lr = 0.2 and de f _ep = 40 as our
optimal parameter combination, where the model accuracy is
maintained and privacy score is high enough to mitigate any
reconstruction attack and the following adversarial attack.

E. Defense Overhead

Finally, we conduct experiments to present defenses’ com-
putation and memory overhead.

1) Setup 7: We first evaluate algorithm running time for
all the defenses, where only one local user trains a global
DNN model on KDD99 dataset with full training dataset
for 100 epochs. To further demonstrate FedDef’s advantage,
we also compare FedDef alone with traditional homomorphic
encryption’s (HE) performance in terms of computation and
memory overhead.

Specifically, we adapt from an open-source github
project [44] named phe, which implements the Paillier Par-
tially Homomorphic Encryption. It first generates both public
and private key, where local user encrypts their gradients with
public key and decrypts the aggregated gradients with private
key. Such encryption and decryption can induce extra overhead
during FL. We also follow the same training setting as other
defenses and record the absolute training time and memory.

For complete results, we also present the privacy evalua-
tion overhead that includes GAN training (100 epochs) for
black-box attack and PGD optimization (100 steps) for white-
box attack. For all the experiments, we repeat the process for
five times and report the average results.

2) Overhead Analysis: Fig. 9 illustrates the relative training
time under our optimal parameters. We can find that our
defense induces additional 0.35 time in exchange for model
performance and privacy protection guarantee. Such com-
putation overhead is reasonable because optimization-based
defense iteratively searches for optimal pseudo data while
other defenses such as differential privacy directly injects
noises and does not induce additional computation.

Fig. 9. Relative training time comparison among baselines.

Fig. 10. Absolute time and memory overhead comparison between FL
(FedDef and Paillier) and adversarial attack (PGD and GAN).

We also present Paillier’s overhead along with our pri-
vacy evaluation process in Fig. 10. In general, FL process
(FedDef and Paillier) can take up more time and memory
than adversarial attack (PGD and GAN). Specifically, Paillier
is significantly worse and induces about 150 times extra
training time (3, 0421s) than FedDef (200s), while our privacy
evaluation is also feasible to perform and only takes < 1s for
white-box PGD attack and around 15s even for GAN-based
attack. As for memory occupation, FedDef and Paillier share
similar results (722-724 MB), while PGD and GAN-based
attack only take up 175-185 MB memory.

The results above demonstrate that our defense has great
advantage over HE-based methods in terms of time overhead,
and our privacy evaluation (white-box or GAN-based) is
feasible to perform that only requires limited resources.

VII. DISCUSSION

A. Additional Computation Overhead

The main reason for additional training time is that our
defense transforms the data for every local update with high
gradient computation overhead in Eq. (9). Our future work
can try improving Algorithm 1 by transforming private data
only once or distilling the model parameters to reduce pseudo
gradient optimization.

B. Traffic Space Attack

For black-box attack, we have only leveraged GAN to
generate adversarial features instead of real traffic data to
attack the NIDSs. However, generating more practical traffic
is beyond the scope of our work, and we can adapt current
approaches like GAN+PSO [33] to further improve the attacks
and thus better evaluate the defenses.
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VIII. CONCLUSION

In this work, we first propose two privacy metrics specif-
ically designed for FL-based NIDS, i.e., privacy score from
reconstruction attacks and evasion rate from GAN-based
adversarial attack, to derive an accurate evaluation of pri-
vacy protection and demonstrate the insufficiency of existing
defenses. To build a more robust FL-based NIDS, we fur-
ther propose a novel input perturbation optimization defense
strategy, i.e., FedDef, which aims to generate pseudo data
to maintain model utility and constrain gradient deviation to
provide privacy protection. We also give theoretical analy-
sis for utility and privacy guarantee with our defense. The
experimental results illustrate that our defense outperforms
existing defenses and proves great privacy protection during
both training stages against both attacks while also maintaining
model accuracy loss within 3%.
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