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Abstract—Low latency live streaming (LLLS) like LL-DASH
has significantly reduced the end-to-end latency via chunked
transfer encoding (CTE). However, LLLS also comes with more
challenges for adaptive bitrate (ABR) algorithms: (1) bandwidth
measurement is non-trivial and inaccurate due to the possible
idle time between chunks in CTE; (2) the various uncertainty in
LLLS such as fluctuating segment size further lead to inaccurate
buffer estimation, severely degrading ABR’s performance. In
this paper we propose AAR consisting of two modules: (1)
accurate bandwidth measurement with Flag from the server that
represents the burst chunks within a segment, which allows for
more consecutive valid HTTP chunks; (2) an LLLS tailored ABR
with a novel robust objective that maximizes the minimum quality
of experience (QoE) brought by the uncertainty. To obtain the
minimum QoE, we propose a theorem based on the upper bound
of download time estimation, which is backed up by theoretical
guarantees. To derive the maximum QoE, we propose a new
LLLS state evolution mechanism and apply Model Predictive
Controller (MPC) to search for optimal bitrate. Extensive real-
world experiments demonstrate that AAR outperforms existing
baselines with 10%-80% measurement error reduction, and
QoE improves by 39%-104% throughout all considered network
conditions.

Index Terms—Live video streaming, Bandwidth measurement,
Adaptive streaming

I. INTRODUCTION

Video streaming has seen significant growth over the years,
it is reported by cisco [1] that video traffic contributes more
than 70% of the global Internet traffic, where live video makes
up 17%. Therefore it motivates us to develop better adaptive
bitrate (ABR) algorithms to deliver users better quality of
experience (QoE). Different from traditional video-on-demand
(VOD) streaming, low latency live streaming (LLLS) [2]
presents more challenges because the video segment can be
delivered only after it’s been captured and rendered from the
ingest side. Therefore the total latency is at least the duration
of a video segment (about 4 seconds in VOD scenario), and it
can increase from rebuffering events which is more likely to
happen due to smaller buffer constraints to ensure low latency.

To address this issue, researchers propose to use MPEG
Common Media Application Format (CMAF) [3] coupled with
HTTP/1.1 chunked transfer encoding (CTE) [4], for example,
in LL-DASH [5]. The ingest side consistently produces cap-
tured frames and uploads to the HTTP server in the unit of
CMAF chunk. When the client requests for the latest segment,
the server can directly deliver the cached CMAF chunks to the
client via basic HTTP chunks, instead of waiting for the full
segment’s arrival. In this way, the end-to-end latency can be
greatly reduced from about 10-30 seconds to 1-5 seconds.

However, such LLLS implementation grapples with two
critical issues: (1) inaccurate bandwidth measurement. On the
one hand, there may exist idle time between CMAF chunks
and by extension the corresponding HTTP chunks, therefore
the client’s perceived download time is longer than the actual
network transmission time. On the other hand, we cannot
obtain the sending time of each HTTP chunk due to the
physical time gap. Therefore we can only analyze the HTTP
chunks’ arrival time to deduce the bandwidth. Although there
have been some solutions trying to identify actual download
time like [6] and [7], they either neglect such idle time or
apply inappropriate filtering algorithms, rendering them far
from being accurate, and in turn greatly degrading ABR’s
performance; (2) various uncertainty in LLLS. Apart from
inaccurate bandwidth, the client also cannot fetch the exact
next chunk size which is available only in VOD streaming,
yet the estimated chunk size from prefixed bitrates can deviate
with up to 50% relative error. Moreover, the idle time from
CMAF chunks and player’s fetch logic further add up the
difficulty to accurately predict the download time and buffer
evolution, leading to inferior bitrate choices.

In this paper, we propose the AAR framework designed for
LLLS. Specifically, to address issue (1), we first identify the
root cause for poor measurement as lacking CMAF chunk-
sending pattern within a segment. Therefore, we propose to
attach a Flag parameter within the HTTP header from the
server, indicating the number of burst CMAF chunks and that
the rest of the chunks may contain idle time. In this way, we
can accumulate the consecutive valid HTTP chunks, and obtain
more accurate bandwidth via size weighted average to smooth
the smaller CMAF chunks’ bandwidth deviation. Moreover,
we also propose an improved CMAF boundary identification
patch in the latest official dash.js to further guarantee accuracy.
To cope with issue (2), we propose a novel max-min objective
for ABR to guarantee the lower bound of QoE brought by
the various LLLS uncertainty. To derive the min solution,
we propose a theorem that by applying the upper bound of
download time, we can model the comprehensive uncertainty
including idle time, segment size, and future bandwidth, thus
estimating the worst LLLS-QoE. We also provide theoretical
guarantees that our objective falls back to regular maximum
QoE when such uncertainty is eliminated, thanks to our careful
upper bound estimation. To derive the max solution, we further
propose a new LLLS model such as the buffer and latency
evolution, with which we apply Model Predictive Controller
(MPC) to combine our novel objective in search of the optimal
bitrates.
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Fig. 1: Idle time between CMAF chunks and HTTP chunks.

Finally, we conduct extensive experiments in real world,
comparing 7 bandwidth measurement baselines and 6 repre-
sentative ABRs with the latest dash.js throughout four network
trace datasets. The results demonstrate that AAR outperforms
existing methods with 10%-80% bandwidth error reduction
and 39%-104% QoE improvement. The ablation study also
validates the efficiency of each module of AAR.

Contributions. We summarize our contributions as follows:
• We carry out a comprehensive analysis from off-the-shelf

baselines to reveal the two critical issues in LLLS, i.e. the
inaccurate bandwidth measurement due to chunk idle time,
and inferior ABR performance due to various uncertainty.
• To tackle the two issues, we propose the AAR framework

consisting of two modules. On the one hand, we propose
to leverage the burst CMAF chunk pattern to accumulate
more valid samples for accurate measurement via robust size
weighted averaging, and we also propose an improved CMAF
boundary identification patch to gain better accuracy. On the
other hand, we propose a novel objective for ABR to maximize
the minimum QoE caused by the uncertainty. To address the
min optimization, we propose a practical theorem based on
the upper bound of download time, followed by theoretical
guarantees for our adaption when uncertainty diminishes. To
derive the max solution, we first propose an improved LLLS
evolution model and apply MPC to obtain the optimal bitrates.
• Extensive real world experiments throughout 4 network

trace datasets demonstrate that AAR outperforms existing 7
measurement baselines and 6 representative ABRs.

II. BACKGROUND AND MOTIVATION

A. Bandwidth Measurement in LLLS

To meet the strict low latency requirement in LLLS, re-
searchers propose to combine CMAF and CTE, where the
segment duration is shorter and the transmission unit is the
smaller CMAF chunk instead of the whole segment, greatly
reducing the total latency. However, it also brings challenges
for accurate bandwidth measurement. The perceived download
time is no longer accurate because there may exist idle time
between two CMAF chunks and by extension, the correspond-
ing HTTP chunks.

0 50 100
Segment

0

1000

2000

Ba
nd

wi
dt

h(
Kb

ps
)

BW-M
BW-P

BW-R
Bitrate

(a) I-moof

0 50 100
Segment

0

1000

2000

Ba
nd

wi
dt

h(
Kb

ps
)

BW-M
BW-P

BW-R
Bitrate

(b) Fleet

Fig. 2: Examples of existing bandwidth measurements’ impact
on fixed ABR’s performance.

We illustrate the reason in Fig. 1, assuming the segment is
composed of three CMAF chunks, each divided into several
small HTTP chunks, where No.4 and No.6 contain parts
of adjacent CAMF chunks. Case 1 represents the catch-up
phase where the requested segment is behind the ingest side,
therefore the whole segment is delivered without pause. While
in case 2, the third CMAF chunk arrives at the server after
some idle time, and the first two are sent out in 5 consecutive
HTTP chunks, followed by the later 6-7 HTTP chunks, where
No.6 carries idle time and No.4 does not. Therefore from the
client side there’s no way to distinguish whether certain HTTP
chunk contains idle time.

Accordingly, researchers have proposed countermeasures to
eliminate such idle time to derive the actual bandwidth [6]–[9].
LoL+ [6] proposes to store the start and end time of a CMAF
chunk, i.e. the arrival time of the HTTP chunk that contains
moof and mdat boxes respectively. And then it computes
the average bandwidth of all CMAF chunks. However, as
indicated in Fig. 1 case 2, the last HTTP chunk No.6 still
carries idle time, which leads to overestimation of the end
time of CMAF chunk 2. Moreover, the first CMAF chunk of
a segment usually contains I frame and can make up 50%
size of the segment, thus averaging on all CMAF chunks can
introduce noises instead. To tackle the issue, Fleet [7] further
proposes to neglect the last HTTP chunk to prevent such idle
time, and it stores all the valid consecutive HTTP chunks to
average bandwidth. However, some valid HTTP chunks can
be filtered out like No.4 in Fig. 1, and the HTTP chunks are
usually about 1500 Bytes, whose download time can be easily
disturbed by random noises.

To verify our analysis, we conduct real world experiments
with rate-based ABR that picks the highest bitrate under the
available bandwidth, refer to Section IV-A for detailed setup.
The results are in Fig. 2, where BW-M, P and R represent the
measured, the predicted and the real bandwidth respectively.
We can find that I-moof (from LoL+ [6]) in (a) does present
relatively lower measurement due to the idle time in the
last HTTP chunk, and the sudden deviation comes from the
small chunks disturbance. As a result, ABR constantly selects
the lowest bitrate (200Kbps) and wastes the bandwidth. In
contrast, Fleet in (b) almost always overestimates because
a single HTTP chunk’s download time can deviate several
milliseconds, causing totally different bandwidth result. There-
fore, ABR sometimes picks bitrate (1000Kbps) higher than the
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Fig. 3: RMPC’s buffer prediction error due to varying size and idle time. We directly use the bitrates and duration to estimate
the segment size.

available bandwidth (e.g. around segment 75 and 120), which
in turn causes the player to stall and degrades the QoE.
• Insight 1: We need to identify cached CMAF chunks from

the server to accumulate the first consecutive HTTP chunks
without idle time, and also mitigate the noise deviation from
the rest of the small chunks.

B. ABR in LLLS

Typical ABRs are designed for VOD scenario, like the
heuristic method RobustMPC (RMPC) [10] that estimates the
bandwidth lower bound and iterates all bitrates combination
based on the evolution model. LLLS ABRs are more so-
phisticated in terms of low latency. Representative method
LoL+ [6] leverages self-organizing maps (SOM) to learn the
bitrate adaption with a new heuristic method to optimize the
playback speed and coordinate latency. However, despite dif-
ferent designs, existing ABRs still operate in VOD pattern that
only considers the uncertainty from bandwidth, while LLLS
brings several new. In addition to the inaccurate measured
and predicted bandwidth, LLLS also includes the unavailable
segment size and comprehensive idle time which consists
of many aspects, such as round trip time (RTT), server’s
pending for CMAF chunks, player’s pause before fetching
(e.g. scheduling in dash.js), etc. Without proper estimation for
the varying size and idle time, ABR cannot establish accurate
modeling and search for optimal bitrates, even with accurate
bandwidth alone.

To prove our concern, we conduct experiments with RMPC
[10] to investigate the uncertainty impact from segment size
and idle time in Fig. 3. Note that we fix the bandwidth and
ABR to control variables. Fig. 3 (a) illustrates the relative error
for estimated segment size and final buffer evolution with fixed
bandwidth. When the estimated size appears lower, RMPC
tends to underestimate the download time and overestimate
the next buffer, which is very likely followed by a stalling
event due to smaller buffer in LLLS. In detail, Fig. 3 (b)
presents the size deviation PDF of a 10 minutes video encoded
at different bitrates (Kbps), which validates that video size can
even be twice the estimated value. In addition, the possible
idle time from both the server and client also contributes
to the inaccurate buffer. Fig. 3 (c) reveals the total idle

time percentage of the total segment download time, which
almost appears random due to comprehensive factors and
severely falsifies the final buffer prediction. More importantly,
a small mismatch in buffer prediction leads to obvious QoE
degradation (refer to Table V in ablation study), e.g. either
wasting bandwidth or causing stalling.
• Insight 2: We need to model the comprehensive un-

certainty in LLLS and derive a robust objective for ABR to
guarantee the lower bound of QoE.

III. PROPOSED METHOD: AAR

A. Overview of AAR

We first summarize the frequently used notations in Table I.
To address the two issues in LLLS, i.e. inaccurate bandwidth
measurement and various LLLS uncertainty, we propose the
AAR (Accurate And Robust) framework and present the
overview in Fig. 4. The workflow is as follows: The player
first requests for segn, and the HTTP server then bursts out
the cached CMAF chunks (ccn,j) via HTTP chunks (hcn,z).
AAR performs bandwidth measurement (Section III-B) with
Flag parameter upon receiving all the HTTP chunks, and then
delivers the predicted future bandwidth via typical smooth
average to the player. Meanwhile, AAR’s ABR (Section III-C)
receives current states from the player such as buffer and
latency. Based on the novel max-min objective, AAR derives
the min solution backed up by theoretical guarantees, and
then combines our novel LLLS modeling with MPC to obtain
optimal bitrates. Finally, the player requests for a new segment
and this procedure continues.

B. Flag-based Bandwidth Measurement

Burst Chunk Measurement. Based on insight 1, we need
to identify the CMAF chunk sending pattern to accumulate
consecutive HTTP chunks. However this information can be
only acquired from the server side, which knows exactly
how many CMAF chunks are cached for burst. Therefore,
we propose to attach a Flag=ki parameter for segi in CTE’s
header, along with the following HTTP chunks, representing
the number of burst CMAF chunks. In this way, we can ensure
that the first ki CMAF chunks are sent without pause, and
by extension, the HTTP chunks. In contrast, the later CMAF



TABLE I: Summary of notations.

Category Notation Meaning Category Notation Meaning

Measurement

N number of segments

ABR

Ri bitrate for segi
K number of CMAF chunks in a segment αk weights for QoE, k ∈ [1, 5]
Zi number of HTTP chunks in segment i si/si,j size of segi/cci,j
segi segment i, i ∈ [1, N ] ui,j idle time before downloading cci,j
cci,j CMAF chunk j of segi, j ∈ [1,K] ci availabel bandwidth for segi
hci,z HTTP chunk z of segi, z ∈ [1, Zi] pci predicted bandwidth for segi
ti,z arrival time of hci,z of segi di/di,j estimated download time of segi/cci,j
hi,z size of hci,z of segi d∗i /d

∗
i,j actual download time of segi/cci,j

ki Flag for segi dui /d
u
i,j upper bound of download time deviation of segi/cci,j

bi,j buffer after downloading cci,j
T CMAF chunk duration cci,j

li/li,j latency after downloading segi/cci,j
ri/ri,j rebuffer time after downloading segi/cci,j
pi/pi,j playback rate after downloading segi/cci,j

CMAF
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Fig. 4: Overview of the AAR framework. BW-M and BW-P represent bandwidth measurement and prediction, respectively.

chunks may contain idle time and bandwidth computation
must operate separately. To reduce the noise deviation, we
propose to leverage size weighted average to guarantee the
major bandwidth from the ki accumulated CMAF chunks,
which contain I frame that makes up 50% of the segment
size.

CMAF identification. Regarding the extraction of CMAF
chunk from HTTP chunks, we propose an improved algorithm
different from LoL+ introduced in Section II-A, where a
CMAF chunk is checked only once in an HTTP chunk, we
need to keep parsing the same hci,z in loop in case a single
HTTP chunk contains multiple CMAF chunks (refer to Fig. 1).
In addition, we identify and fix some patches in offset setting
during the moof +mdat boxes search in the latest dash.js.

Implementation. The detailed procedure of AAR’s band-
width measurement is in Algorithm 1. First of all, we directly
compute the segment bandwidth as done VOD if ki is exactly
K (line 1). Then we initialize bw to store bandwidth samples.
The next key step is to identify the CMAF boundary from hci,z
via our improved searching algorithm (line 3), the resulting T s

and T e store the start and end number of HTTP chunk for each
CMAF chunk, followed by our first and foremost bandwidth
sample that considers all the hci,z for the burst ki cci,j (line 5).
Note that we need to remove the last hc if it contains the moof
box of the next cc (T s

ki+1 == T e
ki

in line 4). Moreover, we also
compute the bandwidth of smaller CMAF chunks (lines 6-8)
to derive the final accurate bandwidth weighted by chunk size

Algorithm 1: AAR’s bandwidth measurement
Input: Flag=ki, received all HTTP chunks hci,z , fetch

request time treq
Output: ci

1 if ki == K then return si−hi,1

ti,Zi
−ti,1

;
2 bw ← [];
3 T s, T e ← extract(hci,z); ▷ CMAF extraction
4 end← T s

ki+1 == T e
ki
? T e

ki
− 1 : T e

ki
; ▷ Burst chunks’

last HTTP chunk
5 bw.append([

∑end
z=2 hi,z

ti,end−ti,1
,
∑end

z=2 hi,z]); ▷ [bandwidth, size]
6 for j ← ki + 1 to K do
7 end← T s

j+1 == T e
j ? T e

j − 1 : T e
j ;

8 bw.append([
∑end

z=Ts
j
+1 hi,z

ti,end−ti,Ts
j

,
∑end

z=T s
j +1 hi,z]);

9 end
10 ci ←

∑
bw[:,0]×bw[:,1]∑

bw[:,1] ; ▷ Size weighted averaging
11 return ci

(line 10) to ensure the priority of our burst chunks’ bandwidth.

C. LLLS tailored ABR

Max-min Objective. Based on insight 2, we need to design
a robust objective to include all possible uncertainty in LLLS.
Following LoL+ [6] and QoE standard in [11]. The typical
objective is to decide the bitrates of N segments to ensure high



video quality Ri, low video rebuffering time ri, low latency li,
normal playback rate pi and low bitrate switches |Ri−Ri−1|,
formulated as follows in Equ. 1:

QoE =

N∑
i=1

(α1Ri−α2ri−α3li−α4|pi−1|)−
N∑
i=2

α5|Ri−Ri−1|

(1)
where αk > 0, k ∈ [1, 5] is the corresponding weight

for each metric. According to Section II-B and Fig. 3, the
uncertainty comes from idle time ui,j , varying segment size
si and inaccurate future bandwidth pci. The intuitive solution
is to maximize the worst QoE brought by the three uncertain
variables, formulated as follows:

max
Ri

min
{ui,j ,si,pci}

QoE (2)

Evolution Model. However, it remains unclear how they
impact the specific metrics in QoE, let alone the inner objective
solution. To derive detailed QoE impact, we first propose a
new state evolution model tailored to LLLS to replace the
existing segment-based ones:

di,j = ui,j +
si,j
pci

(3)

bi,j = max(b−i,j − p−i,j × di,j , 0) + T (4)

ri,j = max(di,j −
b−i,j

p−i,j
, 0) (5)

li,j = l−i,j − (p−i,j − 1)×min(di,j ,
b−i,j

p−i,j
) + ri,j (6)

pi,j =


f(li,j) > 1, if li,j − ltarget > δ

1, if |li,j − ltarget| < δ

f(li,j) < 1, if li,j − ltarget < −δ
(7)

where δ is the prefixed threshold and xi,j , x ∈ {b, p, l} is
the attribute for the jth CMAF chunk of segi, x−

i,j = xi,j−1

if j > 1 and xi−1,K if not. In LLLS, ri =
∑K

j=1 ri,j ,
si =

∑K
j=1 si,j and li/pi is the final latency/speed after

downloading all the CMAF chunks. Specifically, the key
variable is the download time di,j which includes idle time
ui,j and the actual transmission time si,j

pci
, where si,j is the

estimated CMAF chunk size using bitrates. With di,j , we can
predict the buffer bi,j change by draining p−i,j × di,j seconds
of cached video and appending a new CMAF chunk duration
T , along with possible stalling ri,j .

As for the latency evolution Equ. 6, it first catches up or
loses behind at speed p−i,j > 1 or p−i,j < 1. The magnitude is up
to the download time di,j if there is no rebuffering, otherwise

up to
b−i,j
p−
i,j

, because there’s no more content to playback after
that. The rest of the increased latency solely depends on the
stalling time. In comparison, current work estimates in the
WRONG way that only considers the di,j such as Tightrope
[12] and Fleet’s ABR. [7]. Regarding the playback speed p−i,j ,

it depends on current latency deviation around the threshold δ
of target latency ltarget, f function maps latency to speed.

Min Solution. With our novel LLLS model, we can trans-
form the objective 2 into the following:

max
Ri

min
di,j

QoE (8)

The reasons are twofold. On the one hand, we can observe
that the three variables ui,j , si and pci are only related to
the download time di,j , optimizing one variable decreases the
overall complexity. On the other hand, the min objective is
only related to di,j because rebuffering ri and latency li are
the only ones that include the uncertain download time, and
by extension the three variables in objective 2. Specifically,
we can divide the QoE into two parts according to the related
variables as follows:

max
Ri

N∑
i=1

min
di,j∈[0,du

i,j ]
[g1(Ri, pi) + g2(di,j)] =

max
Ri

N∑
i=1

g1(Ri, pi) + min
di,j∈[0,du

i,j ]
g2(di,j) (9)

where g1(Ri, pi) = α1Ri−α4|pi−1|−α5|Ri−Ri−1| and
g2(di,j) = −α2ri − α3li. The key to the min solution is to
identify the di,j that maximizes the rebuffering and latency.
Note that we Do Not tend to accurately predict the actual
download time like Fugu [13] in VOD because it requires
the exact next chunk size in the first place. The solution is
not intuitive since latency li,j is not always ∝ di,j while
rebuffering ri,j is. To this end, we propose Theorem 1.

Assumption 1: Assume that dui,j ≥ T , meaning that each
CMAF chunk’s download time theoretically has at least T idle
time from the ingest side waiting for the captured frames.

Theorem 1: Let Assumption 1 hold, the min solution in
Equ. 9 is when and only when for each di,j = dui,j , i ∈
[1, N ], j ∈ [1,K].

Proof 1 (Theorem 1): First of all,

g2(di,j) = −α2

K∑
j=1

ri,j − α3li

= −α2

K∑
j=1

max(di,j −
b−i,j

p−i,j
, 0)− α3li

(10)

Therefore ri,j ∝ di,j . As for latency:

li,j =


l−i,j − (p−i,j − 1)× b−i,j

p−
i,j

, if di,j <
b−i,j

p−
i,j

l−i,j + di,j − b−i,j , if di,j ≥
b−i,j
p−
i,j

(11)

Therefore li,j ∝ di,j except when p−i,j > 1 and di,j <
b−i,j

p−
i,j

(denoted as case P). However, this is when l−i,j − ltarget > δ
and in order for this to happen, li,j would first go through
|l−i,j − ltarget| ≤ δ and p−i,j = 1, therefore li,j = ri,j . This
means there must have been rebuffering events for the first
time p−i,j > 1.



Algorithm 2: AAR’s LLLS tailored ABR
Input: estimated player idle time uclient, past CMAF

chunk size s∗i,j and idle time u∗
i,j , j ∈ [1,K],

future bandwidth pc, future horizon Nh, past
d∗j , j ∈ [i− 4, i]

Output: Ri+1

1 ∆d =
∑i

j=i−4 |d∗
j−dj |

5 ;
2 for each bitrate combination do
3 for k ← i+ 1 to i+Nh do
4 for j ← 1 to K do
5 uk,j ← u∗

i,j ;
6 if j == 1 then uk,j ← uk,j + uclient;
7 sk,j ←

Rk×K×T×s∗i,j
s∗i

;
8 dk,j ← uk,j +

sk,j

pc ;

9 duk,j ← dk,j +
|∆d|×dk,j

dk
;

10 Other variable evolution in Equ. 4-7;
11 end
12 end
13 Compute QoE as in Equ. 9 with Theorem 1;
14 end
15 Ri+1 ← argmax(QoE);
16 return Ri+1

Therefore for the first time in case P, b−i,j = T and p−i,j > 1,

then we have
b−i,j
p−
i,j

< b−i,j = T , and that li,j first decreases

and then increases as di,j increases, di,j ∈ [0, dui,j ]. Based on
Assumption 1, li,j(dui,j) ≥ li,j(T ) = l−i,j = li,j(0). Therefore
we can still set di,j = dui,j to get the maximum latency li,j .

Moreover, after this operation, ri,j = dui,j −
b−i,j
p−
i,j

> 0, which
means next time bi,j = T , and this process continues.

In summary, we can always set di,j = dui,j to derive the
maximum li, ri and the minimum g2(di,j). ■
dui,j Estimation. To put the theorem in practice, we collect

the past actual segment download time d∗i from the player
feedback to compute the maximum estimated download time
deviation. Specifically, we propose to store historical segment
level d-error as ∆di = |d∗i − di|, then we distribute such ∆di
by the ratio of the estimated di,j over di to obtain the upper
bound dui,j = di,j+

|∆di|×di,j

di
. Note that we do not store ∆di,j

because the actual d∗i,j is not available since the sending time
can be falsified by idle time in HTTP chunks.

To guarantee Theorem 1 does not impact the maximum
QoE when the LLLS uncertainty is eliminated, we propose
Theorem 2 to justify our dui,j computation:

Theorem 2: With accurate ui,j , si,j and pci, objective 9 falls
back to regular objective maxRi

QoE.
Proof 2 (Theorem 2): The proof is intuitive, accurate

variables imply ∆di = |d∗i − di| = 0, thus dui,j = di,j +
|∆di|×di,j

di
= di,j . Therefore the min solution is plain. In

contrast, if we adopt ∆di = |d∗i − dui | = |di − dui | ≠ 0, we
will overestimate dui,j which is supposed to be di,j , therefore

TABLE II: Bandwidth (Kbps) distribution of datasets.

Datasets
Metrics Mean Std 25th 50th 75th

FCC 1526 1288 596 901 3426
Oboe 2966 1552 1765 2940 3957

3G/HSDPA 1933 1053 1130 1836 2472
Online 8594 5674 2789 8115 15359

the min solution is not maximized. ■
Implementation. Finally, to derive the max solution, we

apply MPC algorithm to combine our novel LLLS model to
iterate all possible bitrates combination. The specific procedure
of AAR’s ABR is in Algorithm 2. We first derive the average
d-error from the past 5 segments (line 1). Then we perform
regular MPC search, where each uk,j is estimated by server’s
chunk idle time (line 5), and the first CMAF chunk also
experiences additional client’s fetching idle time and RTT (line
6). sk,j is estimated by the last segment’s chunk size ratio, and
the total segment size sk is fixed as Rk×K×T (line 7). Based
on Theorem 1, we leverage the upper bound duk,j to estimate
the minimum QoE. Finally, we can derive the maximum QoE
(line 13) for each iteration and search for the optimal bitrate
(line 15).

IV. EVALUATION

A. Evaluation Setup

We deploy an HTTP server and dash.js (v.4.7.2) client in
different Ubuntu server IPs. The video codec setting is from
the mmsys-grand-challenge [14]: The target latency ltarget and
buffer are 1.5 seconds with threshold δ = 0.3, and the duration
for each segment is 0.5 seconds, which contains K = 15
CMAF chunks and exactly 15 frames, meaning FPS=30 and
T = 33ms. We use the DASH reference video from [15]
encoded at 6 bitrates: Ri ∈{200, 600, 1000, 2500, 4000,
6000}Kbps. The Chrome-dev tool is used to simulate the
network bandwidth change as suggested in [14], while network
trace datasets include FCC [16], 3G/HSDPA [17], Oboe [18]
and a real-world dataset collected in live streaming of an online
e-commercial APP. The specific bandwidth distribution is in
Table II.

Bandwidth Measurement Baselines. We compare AAR
with 7 baselines, i.e. Fleet [7], DeeProphet [19], Moof parsing
[6] in LoL+, I-Moof that replaces the wrong moof + mdat
parsing in [6] with AAR’s improved patch (line 3 in Algorithm
1), AAST [20] that decides which chunks are downloaded at
network speed or at producer rate, Seg that directly uses the
total download time to evaluate bandwidth, Default in dash.js
that filters out HTTP chunks’ download time whose inter-
arrival time is longer than the average.

ABR Baselines. We select 6 representative baselines: LoL+
[6], L2ALL [21], STALLION [22], rate-based (RB) that picks
the highest bitrate under the available bandwidth, the default
ABR Dynamic in dash.js, and Pensieve [23] which is a rein-
forcement learning-based ABR originally designed for VOD
scenario, we retrain this model with our new live streaming



TABLE III: Bandwidth measurement/prediction error (%) ↓ for different methods.

Category Dataset AAR Fleet I-moof Moof AAST Seg Default DeeProphet

Measurement

FCC 2.55±0.97 21.49±4.07 18.66±2.99 68.15±5.53 24.89±4.50 45.10±6.54 5679

11.8Oboe 3.59±0.48 13.78±2.06 21.00±5.17 69.55±5.97 27.31±4.66 61.08±7.84 1762
HSDPA 3.97±0.26 17.42±1.91 27.56±3.55 76.11±4.00 27.34±3.57 59.79±5.15 2336
Online 3.02±0.20 18.07±1.97 18.79±4.36 45.51±7.46 30.31±4.93 85.69±3.78 562

Prediction

FCC 5.42±1.36 21.52±3.29 18.31±3.10 66.74±6.19 27.04±3.97 45.09±6.36 5421

16.50Oboe 6.50±1.03 15.55±2.35 20.95±4.98 69.07±6.06 28.07±4.66 60.31±7.68 1608
HSDPA 15.06±1.46 24.15±2.31 30.84±3.87 79.60±4.07 31.19±4.02 60.47±5.06 2219
Online 14.58±2.97 26.38±4.09 26.09±6.15 51.82±9.19 37.20±7.38 84.61±3.41 541
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Fig. 5: ABR’s QoE comparison with fixed bandwidth measurement. We present the normalized QoE ↑, bitrates in Mbps ↑,
rebuffer in stalling ratio % ↓, latency in seconds → 1.5, relative playback speed → 1, and bitrate switches in Mbps ↓.

simulator using random samples from FCC and 3G/HSDPA
datasets and the QoE model in Equ. 1. Note that the RMPC
baseline is presented in ablation study, refer to Section IV-D
for setup.

Algorithm Parameters. All the baselines including AAR
are parameter-free, the input parameters from Algorithm 1 and
2 are not prefixed and they depend on the specific streaming
content.

Evaluation Metrics. (1) Absolute relative error |x−x∗|
x∗ ,

where x and x∗ is the estimated and ground truth value, x
can represent bandwidth measurement and prediction, and also
buffer prediction in Section IV-D. (2) QoE model. We follow
Equ. 1 and set the weights αi according to N-QoE [11] adopted
by prior work [6], [19]. Specifically, Rmin = 200, Rmax =
6000, and α1 = 0.5, α2 = Rmax, α3 = 0.02×Rmin if li < 1.6
and 0.1×Rmax if not, α4 = Rmin, α5 = 1.

B. Bandwidth Measurement Results
Bandwidth Measurement. We first demonstrate AAR’s

accurate bandwidth measurement. For the sake of fairness, we
fix the ABR as RB, and present the average measurement
errors in Table III. Note that we apply AAR’s improved
CMAF identification patch to all the baselines except Moof.
We directly report DeeProphet’s performance stated in [19].

We can find that AAR consistently outperforms all the base-
lines with 8%-80% improvement throughout all the datasets.
Specifically, compared to the second and existing SOTA
measurement DeeProphet, AAR still surpasses with 8%-9%

error reduction, let alone other methods. However, DeeProphet
needs extra setup on the server side, and the measurement
result ci is stored at server’s database, which can only be
delivered to the client upon segi+1 request. As a result, it
modifies the requested bitrate to be lower than the measured
bandwidth from the server side to prevent such delay, which
has altered the whole LLLS framework and is not practical
to deploy. Surprisingly, we find I-moof can reduce at most
50% error compared to the original Moof, which validates
the importance of our correct moof + mdat search for the
later measurement. AAST and Seg are relatively worse as they
neglect the CMAF chunk level idle time. Default is the worst
because its HTTP chunk filtering strategy is too aggressive,
random noises would render some chunks to be removed for
false idle time.

Bandwidth Prediction. To further demonstrate the impor-
tance of measurement, we also present the prediction errors
using the trivial smooth average in Table III. The relative
performance among baselines is similar to that in measure-
ment. However, we find that AAR’s prediction accuracy drops
for 3G/HSDPA and Online dataset, because if the original
network trace varies a lot, it won’t help even with accurate
measurement, we would need extra approaches to predict
the bandwidth evolution such as the learning-based in [19],
which is beyond the scope of our work. In general, AAR’s
measurement outperforms all baselines with extremely low
error rate, which in turn benefits the prediction performance.



TABLE IV: ABR’s QoE ↑ with different bandwidth measurements.

Dataset Mea
ABR AAR Pensieve LoL+ L2ALL STALLION Dynamic RB

FCC AAR 5.23±2.00 3.08±1.59 3.66±1.55 3.31±1.52 2.70±1.60 3.81±1.50 3.28±1.52
Fleet 5.20±2.01 1.00±2.06 3.42±1.69 1.37±2.20 2.51±1.73 3.97±1.51 1.63±2.08

Oboe AAR 1.40±0.25 1.01±0.15 1.18±0.21 1.16±0.21 1.10±0.21 1.17±0.20 1.16±0.21
Fleet 1.23±0.27 1.00±0.18 1.18±0.24 1.17±0.27 1.10±0.21 1.12±0.22 1.14±0.26

HSDPA AAR 1.84±0.41 1.52±0.33 1.54±0.38 1.53±0.38 1.17±0.46 1.59±0.33 1.57±0.38
Fleet 1.83±0.42 1.24±0.45 1.40±0.43 1.32±0.63 1.00±0.55 1.45±0.34 1.31±0.61

Online AAR 2.20±0.38 1.07±0.35 1.86±0.81 1.91±0.53 1.38±1.14 2.07±0.46 1.87±0.57
Fleet 2.22±0.39 1.00±0.66 1.94±0.75 1.49±0.96 1.72±0.59 2.04±0.45 1.71±0.76

C. ABR QoE Results

For a fair comparison, we fix the bandwidth measurement
as AAR. The aggregate statistics for QoE scores and indi-
vidual QoE components are shown in Fig. 5. Note that we
normalize the metric value by the worst baseline. Overall,
AAR outperforms all the baselines with 39%-104% QoE
improvement, which mainly stems from high bitrates and low
rebuffering simultaneously. In comparison, the SOTA baseline
in LLLS LoL+ is inferior mainly in rebuffering, especially
for 3G/HSDPA and Online due to the varying bandwidth.
Dynamic ranks second since it tends to pick the lowest bitrate
among all the ABR rules, which favors the rebuffering and la-
tency QoE components. L2ALL shares similar performance as
RB while STALLION sometimes gets the worst result, which
means simply improving future bandwidth estimation provides
limited QoE improvement. Pensieve performs the worst for
Oboe and Online dataset due to the unseen traces during
training, therefore the picked bitrate is lower than available
bandwidth. This may apply to other learning-based ABRs that
depend on the training sample distribution like BDQ [12]. In
general, AAR outperforms existing ABR baselines with higher
QoE, bitrates and lower rebuffing.

D. Ablation Study

To validate the effectiveness of each module of AAR, we
combine different ABRs with different bandwidth measure-
ments in Table IV. Note that we only pick the representative
Fleet measurement for comparison, because DeeProphet re-
quires extra setup and alters our LLLS framework, despite its
performance. For each dataset, we normalize the QoE with
the minimum value across 2 measurements and 7 ABRs. The
results demonstrate AAR’s measurement generally improves
ABR’s performance and vice versa. As for Online dataset,
Fleet+AAR’s ABR performs better than AAR+AAR, and
LoL+ and STALLION also present better results combined
with Fleet rather than AAR, it’s mainly because most Online
traces contain high bandwidth, and Fleet generally overes-
timates the bandwidth (refer to Fig. 2 (b)), which causes
ABRs to select higher bitrates. However, the highest bitrate
is 6000Kbps which does not even make up 50% of the Online
dataset (See Table II). Therefore high bitrates may not trigger
stalling at all and QoE rather improves.

To demonstrate our novel max-min objective improves
overall QoE, we replace the min solution dui,j with regular

TABLE V: QoE ↑ and B-Error ↓ ablation study of AAR’s
ABR.

Dataset Metric
ABR AAR AAR-1 (RMPC) AAR-2

FCC QoE 1.14±0.43 1.00±0.39 1.13±0.42
B-Error 6.67%±1.61% 7.37%±1.94% 7.27%±1.88%

Oboe QoE 1.12±0.20 1.00±0.24 1.11±0.21
B-Error 4.38%±0.33% 6.44%±0.72% 6.42%±0.68%

3G/HSDPA QoE 1.18±0.26 1.00±0.25 1.18±0.27
B-Error 5.39%±0.48% 7.66%±0.85% 7.58%±0.81%

Online QoE 1.04±0.17 1.00±0.16 1.01±0.14
B-Error 4.79%±1.00% 7.39%±1.56% 6.84%±1.21%

di,j , and by contrast we adopt RMPC’s bandwidth prediction
error module pc ← pc

1+|∆pc| , denoted as AAR-1 (RMPC). To
demonstrate the rationale for ∆di = |d∗i − di| that guarantees
adaption, we instead use ∆di = |d∗i−dui | to estimate the upper
bound dui,j , denoted as AAR-2. For better comparison, we
also use the buffer prediction error |b−b∗|

b∗ to evaluate ABR’s
modeling performance. The QoE and B-Error results are in
Table V. We can find that AAR outperforms AAR-1 and AAR-
2 with QoE improvement of 3%-18% and B-Error reduction
of 0.6%-2.6%. AAR-1 ranks the bottom because our max-min
objective is the essential guarantee for robustness against all
possible LLLS uncertainty. Despite AAR-2’s higher QoE than
AAR-1, its B-Error is still high because of the inappropriate
estimation of dui,j , as validated by Theorem 2.

To better perceive the difference, we present intuitive ex-
amples of buffer evolution and prediction errors in Fig. 6. We
can find in (a) that AAR’s predicted buffer is close to the
ground truth value, even when the segment size varies around
segment 40 in (d), thanks to our novel max-min objective
that adjusts the download time estimation based on historical
deviation. In contrast, AAR-1 performs worse because RMPC
only considers bandwidth uncertainty by design principles,
therefore the size fluctuation around segment 40 in (e) leads
to inferior buffer prediction in (b). AAR-2 adopts ∆di =
|d∗i−dui | > 0 even with low deviation around segment 50 in (f),
which renders varying download time and buffer estimation.
Therefore the latency also fluctuates in (c) due to playback
speed adjustment to guarantee the buffer threshold (1.5s).

E. Overhead Analysis

Regarding bandwidth measurement, different from existing
methods like DeeProphet [19] and CLBE [24] that alters
streaming protocols or introduces additional time delay, AAR
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Fig. 6: Buffer evolution (a)-(c) and corresponding relative prediction error (d)-(f).

Does Not modify the client architecture and only slightly
changes the server side, which does not bring any additional
time overhead, because the Flag parameter is attached in the
HTTP chunk header, which is due to be sent out in the
first place. In addition, the cached CMAF chunk number
can be easily obtained from the server side. AAR’s ABR
also induces no additional overhead even with a max-min
objective, because we have derived a closed form solution
from Theorem 1 without any optimization. In summary, AAR
improves bandwidth measurement accuracy and ABR QoE
with near zero overhead, demonstrating AAR’s feasibility in
real world deployment.

V. RELATED WORK

Bandwidth Measurement. We have introduced two repre-
sentative measurement schemes in Section II-A. Alternatively,
there are also cross-layer measurements such as DeeProphet
[19] that leverages the TCP cwnd from server’s transport
layer to decide which of the packets are sent consecutively,
reducing TCP blocking time. However, this induces additional
setup overhead and the measured results can’t be delivered
to the clients before the segment request and ABR decision,
which greatly hinders real-world deployment. CLBE [24] also
proposes to use the captured packet information at the client
side to compute packet level bandwidth. However, it requires
queries from third-party module via WebSocket, which can in-
duce additional time overhead, and a single packet’s bandwidth
still suffers deviation from noises the same way as Fleet.

ABR Algorithm. The history of ABR starts with heuristic
methods like rate-based and RMPC [10], followed by deep
learning-based schemes like Pensieve [23] and Comyco [25].
Karma [26] improves QoE by learning the causality among
past observations, returns and actions. Jade [27] instead pro-

poses to optimize QoE by aligning with user’s scores via
RLHF [28]. SODA [29] proposes to optimize a time-based
QoE with theoretical guarantees. More recently, LLLS ABRs
are proposed to optimize latency and playback speed like
LoL+ [6] in Section II-B. L2ALL [21] instead solves an online
convex optimization problem to derive optimal bitrate. STAL-
LION [22] improves bandwidth measurement with the mean
and deviation for better decisions. Tightrope [12] proposes
the BDQ framework that leverages reinforcement learning to
control both bitrates and playback speed. However, it’s only
implemented in offline simulator and lacks compatibility with
real world streaming. SLVS [30] also proposes to generate
a parameter table in a simulator according to bandwidth
distribution for hybrid ABR to adjust the bandwidth weights.

VI. CONCLUSION

In this work, we present two challenges in LLLS with
respect to inaccurate bandwidth measurement and various
LLLS uncertainty. Based on the insights, we propose the
AAR framework consisting of two modules. On the one
hand, we propose to attach a Flag parameter to identify
the burst CMAF chunks to accumulate consecutive HTTP
chunks for smooth bandwidth via size weighted average. We
also improve the CMAF boundary identification to further
guarantee accuracy. On the other hand, we propose a novel
max-min ABR objective to guarantee the lower bound of
QoE. We propose theorems to derive the min solution and
guarantee adaption. To address the max objective, we further
propose a novel LLLS model and apply MPC to search for
the optimal bitrate. Real world experiments demonstrate that
AAR outperforms 7 measurement and 6 ABR baselines with
significant improvement. The ablation study also validates the
effectiveness of each module of AAR.
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