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ABSTRACT

Content-aware streaming requires dynamic, chunk-level importance weights to
optimize subjective quality of experience (QoE). However, direct human annota-
tion is prohibitively expensive while vision-saliency models generalize poorly. We
introduce HiVid, the first framework to leverage Large Language Models (LLMs)
as a scalable human proxy to generate high-fidelity weights for both Video-on-
Demand (VOD) and live streaming. We address 3 non-trivial challenges: (1)
To extend LLMs’ limited modality and circumvent token limits, we propose a
perception module to assess frames in a local context window, autoregressively
building a coherent understanding of the video. (2) For VOD with rating incon-
sistency across local windows, we propose a ranking module to perform global
re-ranking with a novel LLM-guided merge-sort algorithm. (3) For live stream-
ing which requires low-latency, online inference without future knowledge, we
propose a prediction module to predict future weights with a multi-modal time
series model, which comprises a content-aware attention and adaptive horizon to
accommodate asynchronous LLM inference. Extensive experiments show HiVid
improves weight prediction accuracy by up to 11.5% for VOD and 26% for live
streaming over SOTA baselines. Real-world user study validates HiVid boosts
streaming QoE correlation by 14.7%.

1 INTRODUCTION
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Figure 1: Overview of content-aware streaming. The estimated chunk weights wi are incorporated
into QoE and optimized by ABRs. Higher weights would render better viewing experience.

Content-aware video streaming improves quality of experience (QoE) by allocating higher bitrates
to more important video chunks guided by user-perceived priority weights Zhang et al. (2021).
As shown in Figure 1, with available video chunks and optional text description, we can estimate
the saliency score and incorporate it into existing QoE model. Following past work on highlight
detection Moon et al. (2023); Xiao et al. (2024), here we denote the saliency as the overall content
importance score for each video chunk. We distinguish it from visually salient regions within a
frame in classic video saliency prediction tasks.

The adaptive bitrate (ABR) algorithms Chen et al. (2024a) then optimize the bitrates with preference
priority such that higher weights incur higher quality and less rebuffering, thus rendering better
subjective experience. However, such human-centric and content-dependent saliency task brings
new challenges to existing paradigms.
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Figure 2: Inaccurate saliency of previous work and significant overhead of human ratings.

Challenge 1: Why LLM and Its Constraints. The most intuitive solution is computer vision (CV)
based highlight detection like DETR Moon et al. (2023), which learns to identify per-chunk tempo-
ral saliency scores from training videos. However, these models are too small to capture the complex
semantic content and generalize across diverse video categories. Alternatively, large video under-
standing models like VideoLLaMA3 Zhang et al. (2025) excel in objective question answering and
captioning tasks, but they often yield invalid and inaccurate responses when it comes to zero-shot
subjective rating. We present a case study in Fig. 2 (a) (refer to experimental setup). We can find that
neither paradigm can fit the ground truth with high PLCC correlation (legend value). On the con-
trary, SENSEI Zhang et al. (2021) conducts offline crowdsourcing ratings with human involvement,
which is accurate but expensive and time consuming (78 minutes and 100$ per video). Therefore
it’s impractical for large-scale deployment, especially for live streaming, as shown in Fig. 2(b).

To enable both accuracy and efficiency, we can harness LLMs for zero-shot subjective reasoning as
human proxy. However, video modality is unavailable for most SOTA LLMs like GPT-4o, which
motivates us to assess only anchor frames from each chunk. Moreover, the limited input tokens (e.g.,
128k) prohibit memorizing all historical context when dealing with long videos (LLM+Context in
Fig. 2(b)). Therefore, we can break down the frames via local sliding window to enable fine-grained
rating and global summarization with minimal overhead (LLM+Window in Fig. 2(b)).

Frame 79 (Rating: 65):

   …it lacks the 

climactic moment

(65 & 70)   VS  (75 & 85) ：Inconsistent Rating Without Enough Context

Frame 80 (Rating: 70):

   …increasing viewer 

interest slightly more

Frame 108 (Rating: 75):

 …making it appealing 

to viewers familiar with 

his legacy.

Frame 109 (Rating: 85):

 …making it highly 

interesting for viewers.

Figure 3: Inconsistent rating distribution.

Challenge 2: Rating Discrepancies in
video-on-demand (VOD). Due to the lack
of global context across frames in Chal-
lenge 1, the LLM rating distribution may
vary significantly across different local
windows. We present an example in Fig.
3 with sliding window length m = 10.
During frames 79-80, the scoring scene
receives the most attention (the highest
ground truth) but the rating only reaches
65-70, while the less intense celebration during frames 108-109 is rated 75-85. This is because the
results from one window only manifest local importance without global reference. To enable con-
sistency, an appropriate re-ranking across chunks can eliminate context bias and rating discrepancy.

Challenge 3: Uncertainty in Live Streaming. Different from VOD, live streaming requires real time
decision without future chunks’ knowledge. To this end, we can only predict the future weights
based on historical ratings via forecasting models. However, the LLM inference latency is variable
and dependent on the input tokens (see Table 2). Therefore, a robust prediction must adjust the future
horizon to cover the time interval gap for chunks that are not yet rated. Only then can ABRs optimize
the future chunks’ weighted QoE to decide the optimal bitrate. In addition, the inherent multi-modal
time series also calls for a new content-aware forecasting model to further boost accuracy.

In response, we propose HiVid, the first systematic framework that harnesses the power of LLMs as
judge for content-aware streaming with 3 tailored modules. To address challenge 1, we propose a
perception module to derive overall video description and chunk-level saliency scores. We leverage
LLMs to assess sampled anchor frames from each chunk via a local sliding window. The response
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comprises frame group ratings with periodical video summary as a compact historical context for
subsequent windows. In this way, HiVid is adaptive to arbitrary video length without token limits.

To address challenge 2, we propose a ranking module on top of the previous perception. With the
global video summary and group ratings, we propose to re-rank the groups with a novel variant of
merge sort algorithm, which encompasses an LLM-guided comparison capable of sorting multiple
frames. In this way, we obtain a globally consistent saliency map without distribution discrepancy,
while the overall summarization from perception module also guides the LLM reasoning.

To address challenge 3, we propose a prediction module in parallel with perception module. Upon
each response of previous group rating, we leverage a novel multi-modal time series forecasting
model to predict the future chunk weights that are yet to arrive. We align frames and periodical text
summary with CLIP Radford et al. (2021), and then we propose a content-aware attention to capture
the impact of multi-modal video statistics on time series evolution. To further meet the strict latency,
we dynamically adjust the prediction dimension asynchronously depending on LLM and forecasting
latency. In this way, we achieve real-time streaming by pre-generating the future weights.

We conduct extensive experiments on 3 well-known highlight detection datasets. Regarding VOD,
HiVid surpasses 8 SOTA highlight detection and video understanding models by 11.5%, 6% and
14.7% in terms of correlation, mean average precision (mAP) and mean opinion score (MOS) accu-
racy. Regarding live streaming, HiVid also outperforms 9 SOTA forecasting by 26% while guaran-
teeing real-time latency. We summarize our contributions as follows:

• We present HiVid, the first coherent LLM-guided pipeline for content-aware VOD and live stream-
ing. We identify 3 key challenges: (1) Constrained LLM modality and context length; (2) Rating
distribution discrepancy in VOD; (3) Unavailable future chunks and strict latency requirement in
live streaming.

• We address the issues with 3 modules: (1) Perception module that assesses sampled frames via
context windows to iteratively generate video summary and saliency scores; (2) Ranking module that
leverages LLM-guided merge sort algorithm to re-rank all the frames with global video summary.
(3) Prediction module that leverages a multi-modal time series model to predict future weights,
compounded by a novel content attention mechanism and adaptive forecasting dimension.

• HiVid achieves the SOTA across 17 baselines in extensive experiments on public datasets. Real
world user study in streaming QoE also validates the effectiveness.

2 RELATED WORK

2.1 CONTENT-AWARE STREAMING

Traditional video streaming leverages ABRs like heuristic MPC Yin et al. (2015) to decide bitrates
of chunks to maximize objective QoE metrics Duanmu et al. (2019), i.e. higher visual quality, lower
rebuffering, etc. Content-aware streaming Zhang et al. (2021) improves upon additive chunk-level
QoE Mao et al. (2017) by incorporating the subjective content preferences as:

QoE =

N∑
i

wi ∗ qi (1)

where wi and qi denote the chunk weight and objective metrics above. To derive wi, SENSEI Zhang
et al. (2021) leverages crowdsourcing ratings on videos with different low-quality chunks and then
infers the optimal weights. However, such human rating process amounts to expensive cost with
significant delay, which is not scalable for VOD and live streaming.

As an alternative, highlight detection Xu et al. (2021) like DETR Moon et al. (2023) tends to predict
the chunk saliency score from video features by training neural networks like transformers. Video
summarization Apostolidis et al. (2021) like VASNet Fajtl et al. (2019) achieves a similar goal by
inferring chunk importance to the whole video. However, these small models exhibit poor semantic
understanding and generalization ability, especially for unseen videos. Recently, large video models
like VILA Lin et al. (2024) have enhanced the performance of various understanding tasks. How-
ever, they suffer from hallucination and often yield invalid and inaccurate responses when dealing
with subjective but quantitative rating task.
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Figure 4: Overview of HiVid. The perception module generates a video summary with group ratings.
The ranking module yields a ranking list via a variant merge sort algorithm for VOD streaming. The
prediction module predicts future weights via adaptive forecasting for live streaming. The final
weights wi are incorporated into the QoE model.

2.2 LLMS FOR SUBJECTIVE REASONING

On the contrary, LLMs Achiam et al. (2023) have exhibited better semantic reasoning compared
with video understanding models. LLMs have been adapted as an agent Ge et al. (2023) to perform
various understanding Jin et al. (2024) and scheduling tasks Lai et al. (2023), while several studies
Park et al. (2023); Hussain et al. (2024); Liu et al. (2025) also demonstrate the correlation between
LLMs and human behavior regarding subjective perception assessment. However, it has not been
explored how LLMs empower video-level highlights rating because video modality is not directly
supported, and the limited context prohibits an entire video input, presenting a significant gap.

3 PROPOSED METHOD

3.1 OVERVIEW OF HIVID

Built upon previous insights, we present our novel framework HiVid which comprises 3 modules
in Fig. 4. The perception module quickly iterates through the video and generates a summary with
group ratings via sliding window. To adapt to VOD and eliminate rating discrepancies, the ranking
module leverages an LLM-guided merge sort algorithm to rank all the frames, with guidance from
previous summary. The final smoothing further refines the oscillating ratings. To adapt to live
streaming with latency constraints, the prediction module utilizes adaptive multi-modal forecasting
to predict future weights in an asynchronous manner. Together the 3 modules enable efficient and
effective content-aware video streaming.

3.2 (BASIC) PERCEPTION MODULE

In response to Challenge 1, we propose to leverage LLM to understand and rate the video chunks
via sliding window. To align with image modality in LLMs, we directly sample the anchor frame as
the first frame of each chunk to reduce redundancy and computation overhead, while other sampling
like the last frame also suffice (see Appendix F). Unless specified, we estimate the chunk weight
with the sampled frame rating. For a video of D chunks and window of m length, we upload the m
frames along with periodical summary to the LLM. The prompt instructs (see Appendix J) the LLM
to rate the m images based on existing context and then update the summary:

Rkm
(k−1)m+1, Skm = LLM(F km

(k−1)m+1, S(k−1)m), k ∈ [1,

⌈
D

m

⌉
] (2)
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where Rj
i , F

j
i , Si denote rating and frame group from i to j and periodical summary before i frames,

j = min(j,D). The initial summary S0 is the basic title and background of each video. In this way,
we iteratively derive the overall summarization and all the frame ratings, with only

⌈
D
m

⌉
LLM calls.

3.3 (VOD) RANKING MODULE

In response to Challenge 2, we propose to re-rank the grouped chunks to eliminate context discrep-
ancies. To this end, we leverage a variant merge sort algorithm but with LLMs as the comparison
function, which is capable of sorting m frames in O(m) time.

Merging Two Groups. Built upon perception module, to merge two sorted group frames, A =
SFn1

1 and B = SFn2
1 , we pick m

2 frames from each group to form a new m list for sorting. We then
extract the first m

2 sorted frames and put the rest back to the original group, which can be formulated
as:

(SF
km

2

k1
, SF km

km
2

) = LLM(SF
m
2

1 , SF
m
2

1 , SD) (3)

where SF j
i denotes sorted frames from i to j, SD is the overall summary from Equ. 2. When either

group is exhausted, we directly append the remaining sorted frames to the final list. By repeating
Equ. 3 until groups A and B are both exhausted, we derive the final sorted n1 + n2 frames.

Sorting All Groups. For a video of D chunks and
⌈
D
m

⌉
groups of no more than m frames, we

first obtain the SF from sorting R in perception module. Then we follow typical binary recursion
algorithm to iteratively merge groups to obtain sorted D frames, which represent overall content
preferences with global context from both frames and text summary. To evaluate the worst merging
overhead, we derive the following formula:

T (k) = T (

⌊
k

2

⌋
) + T (

⌈
k

2

⌉
) + 2k − 1, k =

⌈
D

m

⌉
(4)

where T (k) is the number of LLM calls for sorting k groups and T (1) = 1. After obtaining the
two sorted halves of D frames, we need to merge them into the final list. While the worst scenario
is when neither half is exhausted faster than the other during Equ. 3. Therefore each LLM sorting
extracts m

2 , rendering
⌈

D
m
2

⌉
= 2

⌈
D
m

⌉
= 2k calls, except that for the last time, we can directly sort

the remaining ≤ m frames without putting the second half back.

The T (k) complexity of Equ. 4 is O(k log k), rendering total complexity of ranking module
O(k log k) +O(k), where O(k) is the overhead of sliding window from perception module.

Gaussian Smoothing. With the final ranking SFD
1 , we normalize the index to [0, 1] as chunk

weights wi. To better fit the smooth ground truth distribution, e.g., in Fig. 3, we further apply
Gaussian smoothing to alleviate the oscillation as wi = GS(s, σ, wi), where kernel size s = D and
σ is the standard deviation. We present the final algorithm in Appendix B.

3.4 (LIVE) PREDICTION MODULE
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Figure 5: We predict future weights upon LLM
response. The future horizon is latency-adaptive.

In response to Challenge 3, we propose to
leverage time series forecasting to predict fu-
ture weights in parallel with perception module.
We illustrate the scenario in Fig. 5. Upon each
frame upload, the LLM response may arrive
later after a token-related interval. Therefore, to
predict future N weights from previously rated
m chunks, the output dimension should cover
the time gap for previous n − m chunks with-
out ratings and N future chunks. Only then can
ABRs optimize Equ. 1 to decide the bitrate of
chunk n+ 1. In this way, we eliminate the sig-
nificant delay by asynchronous prediction and
achieve real-time streaming.
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Forecasting Model. Different from traditional forecasting, we have as input not only the series
data xw ∈ RLin , but also historical frames xi ∈ RLin×3×H×W and video summary xt ∈ RLtext .
To incorporate 3 modalities, we leverage a well-known CLIP Radford et al. (2021) to align the
image and text features. To capture the complex interdependent relationships, we further propose a
novel content-aware attention mechanism. We project the time series features as Query (Q), and the
concatenated image and text content features are projected as Key (K) and Value (V):

Attn(F (xw), F (xcat), F (xcat)) = softmax(
QwK

T
cat√
d

) · Vcat (5)

where F (xw) denotes time series features and F (xcat) = Cat(CLIPv(xi), CLIPt(xt)). In this
way, we motivate the model to learn an attention pattern that specifically answers: Given the his-
torical video content, what context is most relevant if the time series weights evolve as such? The
detailed network architecture is in Fig. 6. Each previous frame is coupled with a rating as time
series with length Lin, while the general video summary has constant length Ltext. We leverage a
frozen CLIP to derive the latent features and then average the image to align the dimension. Then
we project the 3 modality features into Q, K, V in Equ. 5. The multi-head attention is followed by a
linear layer and finally predicts the future weights with length Lout.

To enhance the prediction performance, typical mean squared error (MSE) loss does not suffice,
because the weights distribution represents relative preference. Therefore we propose a novel corre-
lation loss to guide the model as follows:

loss = MSE(x, xgt) + λ ∗ (1−
∑

(x− µx)(xgt − µxgt
)

σxσxgt

) (6)

where x and xgt are the predicted and ground truth weights, µx and σx are the mean and standard
deviation.

Algorithm 1: Forecasting with adaptive output
Input: constant parameters d, m, N , current chunk number i, global variable future weights W
Output: Future weights wi+N

i+1

1 if i%m == 0 then submit m frames to LLM ▷ Equ. 2 ;
2 if LLM response is updated then
3 determine Lout(d,m,N) by Equ. 7;
4 submit m time series to Forecasting(Lin = m, Lout)
5 end
6 if forecasting results w is updated then update w into W ;
7 if wi+N

i+1 in W then return wi+N
i+1 ▷ weighted QoE in Equ.1 ;

8 else return [1] ∗N ▷ original QoE without wi in Equ. 1 ;

Adaptive Prediction. The core idea is to predict longer future weights that include the model
inference time, as shown in Fig. 5. Therefore, the prediction dimension is adaptive to the LLM and
forecasting latency. Assume each chunk is of duration d, we submit m frames (as chunks) to LLM
at t = tm in Equ. 2 but receive at time t = tn, we have LLM interval ∆t = tn − tm and forecasting
latency δ, rendering elapsed chunks without rating

⌈
∆t+δ

d

⌉
.
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Table 1: Saliency accuracy of 2 method diagrams. Blue and Red denote the best and worst.

Large Model-based Vision Saliency-based
Dataset Metrics HiVid VideoLLaMA3 VILA Flamingo MLP PGL-SUM VASNet SL-module DETR

PLCC↑ 0.66 0.54 0.52 0.41 0.59 0.52 0.55 0.59 0.57
SRCC↑ 0.67 0.55 0.54 0.41 0.60 0.54 0.56 0.60 0.58
mAP50↑ 0.86 0.77 0.73 0.56 0.81 0.80 0.80 0.81 0.81Youtube-8M

mAP15↑ 0.53 0.45 0.44 0.33 0.49 0.46 0.46 0.49 0.45

PLCC↑ 0.50 0.41 0.37 0.32 0.44 0.39 0.45 0.43 0.42
SRCC↑ 0.52 0.41 0.37 0.30 0.43 0.40 0.45 0.43 0.44
mAP50↑ 0.67 0.52 0.53 0.47 0.62 0.59 0.66 0.57 0.63TVSum

mAP15↑ 0.40 0.29 0.31 0.25 0.38 0.37 0.34 0.33 0.33

PLCC↑ 0.47 0.35 0.35 0.31 0.37 0.33 0.37 0.39 0.38
SRCC↑ 0.47 0.35 0.36 0.30 0.37 0.34 0.37 0.39 0.39
mAP50↑ 0.62 0.49 0.55 0.39 0.52 0.53 0.57 0.53 0.61SumMe

mAP15↑ 0.37 0.24 0.33 0.23 0.31 0.35 0.33 0.30 0.32

Moreover, since LLMs are called every m frames at t = tkm, the response also arrives periodically
rather than at per frame frequency. Hence we need to secure the future weights for those without
LLM call or response, i.e. chunk number m. Finally, ABR algorithm typically requires N future
chunk weights to optimize the QoE model, which incurs the final prediction dimension as follows:

Lout =

⌈
∆t+ δ

d

⌉
+m+N (7)

Live Streaming Pipeline. The detailed process is in Algorithm 1. Since ∆t+ δ may vary dynami-
cally, we first train several models with randomized different Lout. During inference, for the initial
chunks

⌈
∆t+δ

d

⌉
+m without LLM response, we pad the chunk weights with default 1 (line 8). For

current chunk i, we upload to the LLM if a group of window length m is complete (line 1). This
rating process is executed asynchronously from current video playback. Then we perform rating
forecasting when the latest LLM response is available, which equals time interval of ∆t. Given
this LLM latency and estimated prediction time δ, we can derive the required adaptive output by
Equ. 7. Then we pick a trained model with minimum output dimension satisfying Lout to ensure
the highest accuracy (line 3). This forecasting process is also executed locally and asynchronously
(line 4). Upon new future weights w (from last forecasting submission), we cache the result in a
global weight pool W for future reference (line 6). Finally we check the latest future N weights for
content-aware QoE model (line 7) if available.

4 EXPERIMENT

Datasets and Metrics. We conduct experiments on Mr.Hisum from Youtube-8M Sul et al. (2023),
TVSum Song et al. (2015) and SumMe Gygli et al. (2014) which includes 1953, 50, 25 videos
respectively. We sample 7:1.5:1.5 for training, validation, and testing, respectively. For saliency
scores, we leverage correlation-based Pearson’s linear correlation coefficient (PLCC) and Spear-
man’s rank correlation coefficient (SRCC), and we also include highlight detection metrics mAP50
and mAP15 for comprehensive comparison. For forecasting, we leverage typical mean absolute
error (MAE), root mean square error (RMSE) and also PLCC and SRCC.

Parameter Setting. The default LLM used for HiVid is GPT-4o unless specified. Video chunks D
depends on the test video length, window length m = 10 unless specified, chunk duration d = 1s,
Gaussian smoothing kernel size s = D, σ = 5, forecasting loss λ = 1, Lin = m, pretrained models
with Lout = {1, 2, 3} ∗ Lin, ABRs’ decision horizon N = 5. We also fix the ABR as RobustMPC
Yin et al. (2015) since the QoE can be dynamically adjusted by wi during each optimization. The
QoE model is the same as Pensieve Mao et al. (2017) unless specified. The network trace dataset is
FCC Commission (2016) and 3G/HSDPA Riiser et al. (2013) for later user study.

8 Saliency Baselines. We select 2 highlight detection methods SL-module Xu et al. (2021) and
DETR Moon et al. (2023), 2 video summarization based PGL-SUM Apostolidis et al. (2021) and
VASNet Fajtl et al. (2019) and an MLP based network. We modify the loss function to MSE to learn
the exact saliency score, and we also concatenate the same Gaussian smoothing after each model for
fairness. We also include 3 SOTA video understanding models, VideoLLaMA3 Zhang et al. (2025),
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VILA Lin et al. (2024) and Flamingo Alayrac et al. (2022). We leverage sliding window like HiVid
due to invalid response on entire video rating.

9 Time Series Forecasting Baselines. For uni-modal baselines, we compare HiVid-U (built on only
MLPs without image and text modalities) with 6 SOTA methods, iTransformer Liu et al. (2023),
TimeMixer Wang et al. (2024), TimesNet Wu et al. (2022), Crossformer Zhang & Yan (2023),
PatchTST Nie et al. (2022) and FiLM Zhou et al. (2022). We also include two efficient architectures
RNN Sherstinsky (2020) and LSTM Zhao et al. (2017). For multi-modal baselines, there are no
methods that incorporate image modality. Therefore we compare HiVid-M (with 3 modalities) with
LLM-based method, where we input all the series data, historical frames and text summary with a
prompt instruction for forecasting.

4.1 VOD: SALIENCY SCORE EVALUATION

Table 2: Overhead comparison of different m. 2
(mini) denotes GPT-4o-mini.

Metrics
m 2(mini) 2 4 6 8 10

Token Score↓ 15 278 292 314 321 335
Average latency/s↓ 3.01 3.14 4.2 6.4 8.14 9.83Per API

Latency Std/s↓ 1.46 1.52 1.8 0.65 0.54 0.83

Perception Calls↓ 100 100 50 34 25 20
Ranking Calls↓ 1358 1358 581 350 242 182
Total Cost/$↓ 0.44 8.12 3.68 2.41 1.71 1.35Per Video

Total Time Cost/h↓ 1.21 1.26 0.73 0.67 0.60 0.54

Saliency Score Accuracy. To demonstrate our
perception and ranking modules, we first eval-
uate saliency score and present the results in
Table 1. We can find that HiVid outperforms
with 11.5% and 6% improvement on average
PLCC and mAP50 compared with the second
SL-module respectively, thanks to our video
summary and robust ranking. The latest model
DETR Moon et al. (2023) ranks only the mid-
dle, which demonstrates that even the SOTA
saliency method cannot fully capture video semantic content due to model scaling. In addition,
video models like VILA also exhibit lower accuracy due to inferior reasoning compared with large-
scale LLMs. For a more illustrative case study, we present a saliency distribution in Appendix C.

GT HiVid
VideoLLaMA3VILA

Flamingo MLP
PGL_SUM

VASNet
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Saliency Model
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Figure 7: MOS correlation↑ of saliency models.

Overhead Analysis. We present time and mon-
etary costs for different window lengths m in
Table 2. Per API call, higher m means more
input tokens and hence higher score and higher
latency. However, higher m also performs bet-
ter which renders much fewer API calls as val-
idated by Equ. 2 and Equ. 4. Therefore, the
total cost per video of 201s is generally lower.

User Study. To demonstrate real world stream-
ing performance, we evaluate the QoE when
combining saliency score from 10 different baselines including ground truth. We leverage Ro-
bustMPC ABR to optimize a dynamic QoE model from Mao et al. (2017) with the saliency weights.
We sample 10 category-varying test videos from Youtube-8M encoded at {300, 750, 1200, 1850,
2850, 4300} kbps. Note that we extract only 10s clips around the highest score for viewers. We run
ABRs with 4 random network traces from FCC Commission (2016) and 3G/HSDPA Riiser et al.
(2013). For each viewer, we have 320 10-seconds clips.
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Figure 8: Forecasting performance in live streaming.

We recruit 10 volunteers to evaluate
the above clips and rate each from
1 to 100. We randomly shuffle all
the clips with the same video to en-
sure fair rating without prejudice. Fi-
nally, we compute the correlation be-
tween weighted QoE model and aver-
aged MOS. The results are in Fig. 7.
We can find that HiVid outperforms
with 0.1-0.19 higher PLCC than SL-
module and Flamingo, which vali-
dates the high PLCC in Table 1. In summary, HiVid achieves the SOTA in both weight correlation
and user experience.
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Table 3: Time series forecasting w/o LLM output. The results are averaged on 3 datasets among
Lin = {8, 10} and for each Lin, Lout = {1, 2, 3} ∗ Lin. For RNN and LSTM, Lout = {1} ∗ Lin.

Uni-Modal Multi-Modal

Metrics
Models

iTransformer TimeMixer TimesNet Crossformer PatchTST FiLM RNN LSTM HiVid-U LLM HiVid-M

MAE↓ 0.08 0.08 0.08 0.09 0.09 0.09 0.18 0.18 0.08 0.13 0.08
RMSE↓ 0.13 0.13 0.14 0.12 0.14 0.14 0.22 0.22 0.12 0.27 0.12
PLCC↑ 0.15 0.14 0.15 0.23 0.15 0.15 0.09 0.09 0.24 0.17 0.29w/ PLCC loss

SRCC↑ 0.11 0.13 0.13 0.22 0.12 0.11 0.08 0.10 0.22 0.18 0.27

MAE↓ 0.08 0.08 0.09 0.09 0.08 0.09 0.19 0.18 0.08 0.13 0.08
RMSE↓ 0.14 0.14 0.14 0.12 0.14 0.14 0.22 0.22 0.14 0.27 0.13
PLCC↑ 0.09 0.08 0.09 0.14 0.09 0.09 0.05 0.06 0.16 0.17 0.21w/o PLCC loss

SRCC↑ 0.08 0.08 0.08 0.13 0.09 0.08 0.04 0.06 0.16 0.18 0.20

Time/ms↓ 22 26 48 16 24 22 4 5 3 8134 1350

Table 4: Saliency accuracy of HiVid w/ open-source multi-modal LLMs.

Metric HiVid w/ GPT-4o Llama-3.2-11B-Vision-Instruct Qwen3-VL-8B-Instruct InternVL3-14B gemma-3-12b-it

PLCC↑ 0.66 0.58 0.60 0.64 0.61
SRCC↑ 0.67 0.60 0.61 0.64 0.62
mAP50↑ 0.86 0.80 0.81 0.84 0.82
mAP15↑ 0.53 0.45 0.50 0.52 0.50

4.2 LIVE: FORECASTING EVALUATION

Forecasting Metrics. We present the time series performance in Table 3. HiVid-M outperforms
all the SOTA baselines with the highest PLCC=0.29 and also the lowest MAE=0.08, thanks to
our novel content-aware attention. Even in uni-modality scenario, HiVid-U also achieves the best
performance with PLCC=0.24 and MAE=0.08. This demonstrates that more complex models do not
necessarily lead to better performance without tailored design. In addition, the improved accuracy
when combined with correlation loss in Equ. 6 has also validated our novel design.

LLM-based method performs worse because such task would require sufficient training data, rather
than subjective reasoning. As for the time overhead, HiVid-U is the fastest due to simple MLP
concatenation, HiVid-M may exhibit more cost but it can be circumvented by the asynchronous
pipeline in Equ. 7.

Streaming Metrics. To demonstrate HiVid’s application, we present the forecasting utility (ratio of
chunks with available future weights) and overall correlation (forecasting with LLM rating as input)
in Fig. 8. We can find that for higher m, the utility decreases due to longer initial LLM response
interval in Equ. 7, while parallel calls also decrease which minimizes the risk of response blocking,
i.e. early calls arriving later.

As for the overall PLCC/SRCC, they are bottlenecked by the forecasting accuracy, even with accu-
rate historical weights. Therefore the performance is better with higher m, but with the upper bound
from forecasting PLCC=0.29 (for HiVid-M).

For end-to-end latency in real ABR streaming, we present the time overhead in Appendix D. Overall
HiVid imposes near-zero latency on original ABR, thanks to our asynchronous LLM and forecasting
inference. In general, HiVid also outperforms all the baselines in forecasting accuracy and latency.

4.3 ABLATION STUDY

Table 5: Ablation of HiVid modules in VOD.

Performance Per Video
Model PLCC↑ SRCC↑ mAP50↑ mAP15↑ Cost/$↓ Time Cost/h↓
HiVid 0.660 0.674 0.860 0.526 1.35 0.54

HiVid w/ m=2 (mini) 0.645 0.651 0.848 0.511 0.44 1.21
Gemini-2-flash 0.604 0.592 0.812 0.503 0.03 0.63

Grok2 0.616 0.613 0.824 0.506 1.69 0.69
Claude-3-haiku 0.53 0.55 0.807 0.477 0.41 0.83

HiVid w/o Perception 0.632 0.653 0.852 0.520 1.22 0.49
HiVid w/o Ranking 0.611 0.617 0.820 0.498 0.13 0.054

HiVid w/o GS 0.619 0.621 0.835 0.514 1.35 0.54

To demonstrate the generalization of
HiVid, we also apply the ranking
module on open-source multi-modal
LLMs (mllm) Dubey et al. (2024);
Chen et al. (2024b); Yang et al.
(2025); Team et al. (2025) in Table
4. It is as expected that GPT-4o
still outperforms with up to 13.7%
PLCC improvement. However, lo-
cal mllm can guarantee consistency
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across runs and can be further fine-tuned for specific tasks, though it requires significant local com-
putation.

Table 6: Overall PLCC↑ (w/ LLM rating as input)
for adaptive and constant Lout.

PLCC↑
m 2(mini) 2 4 6 8 10

HiVid-M 0.11 0.12 0.15 0.15 0.18 0.20
Lout = m 0.05 0.05 0.07 0.08 0.08 0.10
Lout = 2m 0.08 0.09 0.10 0.12 0.15 0.17
Lout = 3m 0.09 0.09 0.12 0.15 0.17 0.18

To demonstrate the effectiveness of each mod-
ule, we conduct ablation study in Table 5. Note
that all LLM backbones adopt window length
m = 10 for fair comparison. We can find that
HiVid (with GPT-4o, m = 10) outperforms
with the best performance and lowest time over-
head, while Gemini achieves the lowest cost,
exhibiting different advantages.

SL_module HiVid None GroundTruth
Saliency Model

0.0

0.2

0.4

0.6

0.8

1.0

PL
CC

/S
RC

C 
of

 Q
oE 0.71 0.68

0.81 0.79 0.78 0.76
0.87 0.88PLCC SRCC

(a) KSQI QoE
SL_module HiVid None GroundTruth

Saliency Model
0.0

0.2

0.4

0.6

0.8

1.0

PL
CC

/S
RC

C 
of

 Q
oE

0.75 0.72

0.84 0.83 0.80 0.80
0.89 0.88PLCC SRCC

(b) Comyco QoE

Figure 9: MOS correlation↑ of other QoE models.

By removing the perception module, HiVid
cannot capture the global text summary which
hinders some improvement. However, without
the ranking module, there are significant rating
discrepancies as shown in Fig. 3, which leads
to much lower performance. Finally, the Gaus-
sian smoothing also refines the coarse saliency
score distribution to some extent.

To demonstrate our adaptive prediction, we
leverage constant Lout and append the rest with
1 when necessary as required in Equ. 7. The results in Table 6 show that neither baseline can reach
our accuracy. Because dummy future weights directly degrade the correlation, while longer Lout

also means inferior model performance, given that Lin is constant for each m.

Table 7: LLM robustness for ambiguous videos.

Category PLCC SRCC mAP50 mAP15

Mean ↑ Std ↓ Mean ↑ Std ↓ Mean ↑ Std ↓ Mean ↑ Std ↓
Politics 0.73 0.05 0.74 0.05 0.92 0.03 0.63 0.04
People 0.69 0.03 0.69 0.04 0.88 0.03 0.60 0.02

Education 0.63 0.04 0.62 0.06 0.83 0.02 0.55 0.02

To demonstrate the generalization of HiVid,
we conduct additional user study with different
QoE models in Fig. 9, i.e. KSQI Duanmu et al.
(2019) and Comyco Huang et al. (2019). HiVid
still outperforms with 0.1 and 0.09 improve-
ment on PLCC, which stems from our content-
only saliency assessment. We also present more comparisons with different ABRs and parameters
in Appendix E and F.

To validate the robustness against hallucination, we average the rating of 3 LLMs (GPT-4o, Gemini
and Claude) on ambiguous videos. The results in Table 7 show that even sensitive categories yield
stable accuracy with low deviation, thanks to our robust ranking. In general, all the modules in
HiVid contribute to the overall accuracy and efficiency.

Table 8: Performance of longer live streaming.

Window Length Metric 2 min 30 min 2 hour 6 hour 24 hour

m=10 Cost/$ ↓ 0.08 1.20 4.81 14.43 57.74
PLCC ↑ 0.21 0.26 0.24 / /

m=2 (mini) Cost$ ↓ 0.02 0.27 1.09 3.26 13.03
PLCC ↑ 0.13 0.16 0.15 / /

To demonstrate the large-scale application of
HiVid in live streaming, we present detailed
cost and PLCC of an example video of 2 hours
in Table 8. Since HiVid applies sliding win-
dow for live streaming without future chunks,
the cost increases linearly with video length, i.e.
LLM rating and forecasting once per m video
chunks. For longer window lengths m = 10, the performance is better but with higher cost (57.74$
per 24 hours), yielding a controllable tradeoff. However, we argue that we only need to process the
source video in real-world one-to-many streaming, therefore the cost is actually negligible.

5 CONCLUSION

We introduced HiVid, the first systematic framework to leverage LLMs for content-aware streaming.
We identify the critical trade-off between the inaccuracy of vision-based models and the prohibitive
cost of human annotation. We addressed 3 core challenges: (1) a perception module that updates
summary and ratings via a sliding window to extend modality and context limitations; (2) an LLM-
guided ranking module that ensures globally consistent saliency scores for VOD; (3) a prediction
module with content-aware model based on adaptive dimension to meet the strict real-time live
streaming. Extensive experiments on public datasets and user study demonstrate our effectiveness.
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6 ETHICS STATEMENT

This paper does not raise any ethical issues regarding human subject or dataset usage.

7 REPRODUCIBILITY STATEMENT

We have provided a code example of our basic ranking module in the Supplementary Material in
OpenReview. It includes how to combine merge sort with LLMs and how to compute the total API
calls for overhead analysis. The attached json file is an example of how to store the response of each
sliding window. In this way, we can cache the previous results and resume the ranking in case of
API disconnection. While the periodical video summary can also be updated by querying the last
json results and uploading as LLM input.
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Video Summarization

MergeSort via LLM

**Frames 1-7**: …due 

to their less dynamic 

nature and viewer 

engagement.

**Rating**: 30

The video begins by 

showcasing Maradona's 

legendary free kick, …

**Frame 59**: … 

making it equally 

engaging. 

**Rating: 70**

**Frame 93**: …the 

impending action elevate 

its exciting nature.

**Rating: 85**

**Frame 116**: …the 

moment is less 

attractive compared to 

the match. 

**Rating: 40**

Figure 10: Example of saliency score distribution.

A LLM USAGE STATEMENT

We clarify that this paper does not use LLMs for research ideation or paper writing.

B DETAILED ALGORITHMS

Algorithm 2: MergeSort

Input: sorted frame groups SF km
(k−1)m+1, k ∈ [1,

⌈
D
m

⌉
], video summary SD

Output: sorted frames SFD
1

1 mid=
⌈

D
2m

⌉
, Sorted=[] ;

2 A = SF
⌈D

2 ⌉
1 =MergeSort(1,mid) ; ▷ Binary recursion

3 B = SFD

⌈D
2 ⌉+1

=MergeSort(mid+1,
⌈
D
m

⌉
) ;

4 while A and B are not exhausted do
5 C

m
2
1 , Ckm

km
2

=LLM(A
m
2
1 , B

m
2
1 , SD) ; ▷ Equ. 3

6 if len(A+B) ≤ m then Sorted.append(Cm
1 ) ;

7 else Sorted.append(C
m
2
1 ) ;

8 Put Ckm

km
2

back to A and B;

9 end
10 Sorted.append(Remaining SF );
11 return Sorted

The detailed ranking process is in Algorithm 2. We leverage the typical binary recursion to iterate
the frames. To merge two sorted groups, we first select m/2 frames from each group, and then we
query the LLM to update the total m frames. Following typical merge-sort, we only save the first
half of the sorted m frames to enable subsequent LLM comparison.

C CASE STUDY OF SALIENCY SCORE

We present an example of the estimated score in a soccer game in Fig. 10. We can find that all the
baselines fail to fit the actual distribution. The plain curve indicates that saliency models only overfit
the training videos without truly learning from semantic content, while video understanding models
also overlook the most appealing parts. On the contrary, HiVid generally understands the video
content with excellent video summary and frame analysis, e.g., low rating (30) during interview and
high score (85) during shooting.
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Table 9: Time overhead for ABRs w/ different module delays when end-to-end latency T = 5s.

Baselines Raw ABR HiVid w/ LLM w/ prediction w/ both

ABR Time/s ↓ 0.486 0.494 10.316 1.836 11.616
Proportion of T ↓ 9.72% 9.88% 206.32% 36.72% 232.32%

Table 11: Ablation study of HiVid w/ different settings and parameters. Blue and Red denote the
best and worst for each metric across the HiVid variants. The default standard deviation σ = 5.

Method
Metric Youtube-8M TVSum SumMe

PLCC SRCC mAP50 mAP15 PLCC SRCC mAP50 mAP15 PLCC SRCC mAP50 mAP15

HiVid 0.66 0.67 0.86 0.53 0.50 0.52 0.67 0.40 0.47 0.47 0.62 0.37
HiVid w/ last frame 0.66 0.68 0.86 0.52 0.51 0.51 0.66 0.40 0.47 0.48 0.62 0.37

HiVid w/ middle frame 0.65 0.66 0.84 0.50 0.51 0.52 0.68 0.41 0.47 0.47 0.61 0.36
HiVid w/ 2σ 0.68 0.69 0.89 0.55 0.52 0.55 0.70 0.41 0.49 0.49 0.64 0.38
HiVid w/ σ

2 0.62 0.62 0.81 0.50 0.47 0.48 0.65 0.38 0.45 0.44 0.59 0.35

D END-TO-END LATENCY

To demonstrate our adaptive prediction for real time requirement, we present the time overhead in
Table 9. We can find that HiVid only imposes additional 8ms which stems from asynchronous rating
and prediction. Therefore HiVid achieves the same latency as the original ABR. However, without
our adaptive prediction, we would have to await the significant delay to prepare all the historical
input for forecasting, which leads to much higher latency (11.616s). For an example of latency
T = 5s, the decision time of HiVid+ABR does not impact overall experience, while the delay
waiting would completely block the ABR decision.

E MORE ABLATION STUDY: DIFFERENT ABRS

Table 10: MOS correlation ↑ w/ different ABR
algorithms.

ABR PLCC↑ SRCC↑
w/ QoE model w/o QoE model

HiVid+Pensieve

/

0.78 0.79
Pensieve 0.76 0.76

HiVid+Comyco 0.85 0.85
Comyco 0.81 0.81

/ BB 0.68 0.69
RB 0.73 0.72

Fig. 7 in our main paper has shown that
HiVid (w/ MPC) surpasses various saliency
model baselines with higher PLCC in mean
opinion score (MOS) correlation. We also ap-
ply HiVid on RL-based Pensieve Mao et al.
(2017), IL-based Comyco Huang et al. (2019)
and compare with traditional QoE-free buffer-
based (BB) and rate-based (RB) ABRs. For
RL and IL-based, we incorporate the future N
chunk weights as input and train the model to
capture the content-aware preference in QoE.
We also modify the reward into weighted QoE
to guide the ABR exploration. The MOS correlation for different ABRs is in Table 10.

Note that RB and BB do not incorporate a QoE model and thus cannot be combined with our QoE
weights from HiVid. We can find that ABRs with HiVid enhancement outperform those without
our method. HiVid with Comyco performs the best because the ABR itself achieves the SOTA
traditional QoE optimization Huang et al. (2019). BB is the worst because it only applies buffer to
monitor and predict future evolution based on a heuristic parameter.

F MORE ABLATION STUDY: DIFFERENT PARAMETERS

We also conduct experiments for different anchor frame choices and Gaussian smoothing param-
eters in Table 11. The results demonstrate that frame sampling method only introduces limited
performance deviation, because a video chunk of 1 second often comprises many semantic-similar
frames, regardless of the specific position. While the Gaussian smoothing can present significant
impact. Overall, higher deviation σ means smoother curve and more stable ratings and hence better
performance. However, a significantly high σ can also eliminate the original information of our
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Table 12: Accuracy consistency across runs.

Metric HiVid w/ GPT-4o HiVid w/ Gemini-2-flash HiVid w/ Grok2 HiVid w/ Claude-3-haiku

PLCC↑ 0.66±0.03 0.60±0.03 0.62±0.02 0.53±0.05
SRCC↑ 0.67±0.03 0.59±0.04 0.61±0.02 0.55±0.04
mAP50↑ 0.86±0.02 0.81±0.05 0.82±0.02 0.81±0.03
mAP15↑ 0.53±0.01 0.50±0.02 0.51±0.01 0.48±0.01

ranking module and thus render a plain curve. We choose σ = 5 for more stable performance
without losing the fine-grained details of our ranking.

G MORE ABLATION STUDY: RANKING CONSISTENCY

Table 13: Accuracy consistency across models.

Metric GPT-4o & Gemini2 Gemini2 & Grok2 GPT-4o & Grok2

PLCC 0.87±0.06 0.91±0.04 0.89±0.04
SRCC 0.89±0.05 0.90±0.04 0.90±0.02

We have demonstrated that HiVid can be com-
bined with local mllm in Table 4, which
ensures consistency across runs by setting
do sample = False and seeds. We evaluate
the robustness of HiVid with proprietary LLMs
across 5 runs in Table 12. The low standard
variance proves the stable correlation and detection accuracy within each model. This means that
LLMs generate most of the chunk-level scores via confident zero-shot subjective reasoning rather
than random guess, e.g. the justified rating for each frame in Fig. 10.

While Table 13 further evaluates the accuracy between models, where Gemini and Grok exhibit
similar results with PLCC=0.91. However, this does not necessarily imply better performance on
video saliency score, i.e. GPT-4o outperforms other LLMs in Table 5.

H MORE ABLATION STUDY: DETAILED PERFORMANCE FOR LIVE
STREAMING

Table 14: Forecasting ablation with LLM output.

Metric Forecast-only Forecast w/ LLM output

HiVid-M Crossformer HiVid-M Crossformer

MAE ↓ 0.08 0.09 0.13 0.16
RMSE ↓ 0.12 0.12 0.18 0.22
PLCC ↑ 0.29 0.23 0.20 0.15
SRCC ↑ 0.27 0.22 0.19 0.13

We have demonstrated the clean forecasting
performance in Table 3. We also present the
prediction with actual LLM rating against the
second SOTA Crossformer in Table 14. It
shows that inaccurate LLM output (as forecast-
ing input) degrades the overall accuracy com-
pared with clean GroundTruth input, especially
for correlation PLCC. This is expected since we
trained the models with clean data, because using LLM output requires significant offline rating gen-
eration.

Table 15: Forecasting module ablation.

Metric HiVid-M HiVid-M w/o Attention HiVid-U

MAE ↓ 0.08 0.08 0.08
RMSE ↓ 0.12 0.12 0.12
PLCC ↑ 0.29 0.26 0.24
SRCC ↑ 0.27 0.25 0.22

We also present the forecasting accuracy with
module ablation in Table 15. We find that
the our content attention effectively learns the
interdependent relationships from the various
modalities (PLCC accuracy gains of 0.03),
while the only uni-modal model performs the
worst without specific guidance from video
content.

I MORE ABLATION STUDY: MOS CONSISTENCY AND STATISTICAL
SIGNIFICANCE
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Table 17: Statistical Significance of MOS correlation from 30 participants.

Metric GT HiVid DETR VideoLLaMA3

PLCC
Value ↑ 0.88 0.76 0.61 0.63

p value ↓ 10−38 10−25 10−14 10−18

CI [0.83,0.92] [0.67,0.82] [0.48,0.73] [0.51,0.71]

SRCC Value ↑ 0.91 0.77 0.65 0.65
p value ↓ 10−46 10−31 10−18 10−20

Table 16: Inter-rater consistency of 30 partici-
pants.

Metric Coefficient of Variation↓ ICC(2,k)↑ ICC(A,k)↑
Result 19.76% 0.82 0.73

To demonstrate the robustness of user study, we
recruit more volunteers and conduct inter-rater
consistency check in Table 16. Coefficient of
Variation (CV) equals to (std/mean)*100, and
we derive CV for each video and then compute
the averaged CV. We also leverage Intraclass
Correlation Coefficient (ICC) to analyze the robustness. ICC(2,k) evaluates the relative rating con-
sistency while ICC(A,k) is more strict that includes the inter-rater variance. We can find that < 20%
CV and 0.82 > 0.75 are considered ”good” according to Koo & Li (2016). While ICC(A,k) is also
”moderately” good, demonstrating valid user study.

In addition, we also present the PLCC and significance for MOS correlation in Table 17. We can
find that the results are similar to that in Fig. 7, and our p values for both PLCC and SRCC across
different baselines are near zero, demonstrating convincing user rating and our model QoE.

J PROMPT INSTRUCTIONS

We present the prompts used during perception module for basic periodical summary and group
ratings.

Prompt:

I have uploaded {len(image path)} frames, each representing a video chunk of 1 second. You first
extract the frame number attached below the image content. These frames exhibit a continuous
{len(image path)} seconds video clip. The original video background for title and category are
{info}. Before this video clip, the periodical video summary is: {story last}.

Your task is as follows:

1. Based on the frames, periodical summary and background, summarize what story this video
has conveyed so far and output your answer as ”story total”. (No more than 100 words)

2. Based on the summary and frames, on a scale of integer (0,100), rate all the {len(image path)}
frames such that higher score exhibits higher interestingness score. Different frames can yield
the same scores.

Your answer must be a json format like this:

json

[

(”story partial”: ”xxx”),

(”story total”: ”xxx”),

json

[

(”frame”: xxx, ”rating”: xxx),

(”frame”: xxx, ”rating”: xxx),
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(”frame”: xxx, ”rating”: xxx)

]

]

K DISCUSSIONS

We present some clarification for HiVid regarding design and evaluations.

1. The usage of LLMs simulates human ratings regarding QoE model.

As explained in Related Work in Section 2.2, LLMs have been widely leveraged for subjective
tasks. For example, Fei et al. (2024) propose Vitron to perform image editing based on prompt
understanding and image analysis. It has also been demonstrated in Hussain et al. (2024) how LLMs
correlate to human behavior regarding subjective perception, including the overall understanding of
real world information like images and texts.

Therefore, our proposal to leverage LLMs for subjective video rating also makes sense regarding
human-centric QoE modeling

2. We leverage existing SOTA LLMs instead of training from scratch.

As explained in Section 2.2, proprietary SOTA LLMs such as GPT-4o Openai (2025) and Gemini
Google (2025) have dominated the text generation domain. Training open-source models like Llama
Meta (2025) also suffices but would require tremendous time and computation overhead. More
importantly, we focus on real world application where ABRs are deployed at the client side. These
devices possess limited CPU/GPU resources and cannot afford local LLMs inference.

Nonetheless, it remains a promising direction to fine-tune a new LLM specifically on various
datasets like Youtube-8M Sul et al. (2023) in future work.

L LIMITATION AND FUTURE WORK

Despite the SOTA results of our HiVid on multiple datasets, HiVid comprises 2 limitations: (1) The
overall inference time overhead for VOD is slightly longer than sliding window iteration, because the
ranking module adopts binary recursion to enable sufficient comparisons among different frames to
ensure accuracy. One future direction is deriving better LLM-guided sorting algorithm that achieves
O(n) time complexity at the cost of more storage like Bucket Sort.

(2) We only test HiVid in the video streaming scenario. However, the preference weights in a video
can also benefit other vision-language-action applications where human judgment also plays a vital
role. Therefore, another future direction is applying our core idea of LLM-guided rating and ranking
in video compression. For example, we can derive frame-level saliency score to apply different R-
D-λ parameters. In this way, we reallocate the bitrates in regions that are appealing to humans.
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